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Abstract: In this letter, an In, ,,Ga, ,,As/In Al

o4 ) Al As InP-based HEMT with f, > 400 GHz was designed and fabri-
cated successfully. A narrow gate recess technology was used to optimize the parasitic resistances. The gate

length is 54. 4 nm, and the gate width is 2 X 50 wm. The maximum drain current /,

maximum transconductance g

m. max

the maximum oscillation frequency f,

max

is 957 mA/mm, and the

DS. max

is 1265 mS/mm. The current gain cutoff frequency f; is as high as 441 GHz and
reaches 299 GHz, even at a relatively small value of V,;=0.7 V. The re-

ported device can be applied to terahertz monolithic integrated amplifiers and other circuits.
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Introduction

The InP based terahertz monolithic integrated cir-
cuit (TMIC) have potentials for applications in plenty of
fields, such as high-resolution security imaging sys-
tems''”, revolutionary communication networks'?', and ra-
InP-based InGaAs/InAlAs HEMTs
have demonstrated high operating frequency, low noise,
high-gain performance, as well as good radiation resis-
tance'’, making them an important device for InP based

dio astronomy'”.
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TMIC.

In recent years, the requirements for higher opera-
tion frequency and larger output power of TMIC result in
a strong push of THz transistor technologies with current
gain cutoff frequency (f,) and maximum oscillation fre-
quency (f.. ). The operating frequencies of integrated
circuit amplifiers have seen corresponding increase to as
high as 1 THz, with InP HEMTSs reaching 1.5 THz f, .
and 610 GHz £,°". And the recent literature reported the
current record of f, = 738 GHz with a gate length of 19
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nm'®. Various efforts have been made to improve the f; of
InP based HEMTs, such as reducing the gate length (L,)
7, source-to-drain spacing (Lg,) """, and gate-to-channel
distance (z,,)"", as well as optimizing the channel lay-
er'' """ and the gate recess'”’. All the above measures are
for minimizing the parasitic resistances, capacitances
and increasing the transconductance.

In this letter, a narrow gate recess technology was
used to optimize the parasitic resistances of InP based
HEMTs. The In,,,Ga, ,As/In, ,Al, ;As HEMTs with
gate length of 54. 4 nm were fabricated. The values of f;
and f,, are as high as 441 GHz and 299 GHz, the maxi-
mum drain current [, . is 957 mA/mm, and the maxi-
mum transconductance g, ... is 1265 mS/mm. The InP
based HEMTs with such high performances can be ap-
plied to terahertz monolithic integrated (TMIC) amplifi-
ers and other circuits.

Fig. 1 A schematic cross-section of InP-based HEMT
K1 InP HEMT Y80 7m 2 &

1 Experiment

The Schematic cross-section of InP-based HEMTs is
shown in Fig. 1. The epitaxial layers of the devices were
grown by Gas Source Molecular Beam Epitaxy (GSMBE)
on 3 inch semi-insulating InP (100) substrates. From bot-
tom to top, the layers consists of a 500-nm In, ;,Al ;As
buffer layer, a 10-nm In, ;,Ga, ,As channel layer, a 3-nm
unstrained In, ;,Al, ,;As spacer layer, Si delta doping layer
with 5%X10"”cm™ doping concentration, a 8-nm unstrained
In, ,,Al, 4As Schottky barrier layer, a 4-nm InP etch-stop
layer for preventing over etching and a 40-nm multi-layer
cap layer that combines heavily-droped In, Al ,,As/
In, 5,Ga, ,As and a heavily-droped In, Ga, ,;As upper cap
layer. Hall measurements from a Hall calibration epitaxial
layer structure were made at room temperature, showing a
carrier mobility of over 10 000 cm*/(Vs).

The fabrication process of InP HEMTs mainly con-
tains five steps, including mesa isolation, ohmic contact
formation, gate recesses, T-Gates, and connection
pads, which is similar to our previously reported devices
. Isolating mesa was formed by phosphoric acid-based
wet etching down to the InAlAs buffer layer. Source and
drain electrodes were defined by electron beam lithogra-

phy (EBL) with a 2. 4-pm distance. Ti/Pt/Au (15 nm/
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Fig. 2 The EBL process with a PMMA/AI/UVIII resist stack
2 PMMA/AVUVIIL G 2] e & i v F o0 20 T2

54800 5.0kV 34.1mm x40.1k SE(M)

Fig. 3 SEM photograph of the T-Gate and gate recess of the In-
GaAs/InAlAs HEMT
K3 InGaAs/InAlAs HEMT /) T R AIMHE 1) SEM I -

15 nm/50 nm) was evaporated and lifted off to form the
source and drain contacts, with contact resistance mea-
sured to be 0. 023 ) emm and the specific contact resis-
tivity 8. 75E-8 Q*cm’ by TLM method.

Subsequently, the trilayer e-beam resist process
was applied to fabricate 50-nm-gate-length T-gates. The
gate process was developed by EBL with a PMMA/Al/
UVII (200 nm/10 nm/800 nm) resist stack, which is
shown in Fig. 2. The top UVIII resist was exposed by a
small dose and wide line. After that, the gate head was
determined by TMAH development and rinsed in DI wa-
ter. Subsequently, the gate foot was defined on a single
layer of PMMA resist and was exposed by a big dose and
narrow line. This approach allows better focusing at the
gate foot exposure step because of the thin PMMA resist.
As a result, this process scheme allows a small L,. After



31 FENG Rui-Ze et al: InGaAs/InAlAs InP-based HEMT with the current cutoff frequency 441 GHz

331

that, the 200 nm gate recess was etched to InP etch-stop
layer by H,PO,-solution, and a Ti/Pt/Au (25 nm/25 nm/
350 nm) T-gate was evaporated and lifted off. The length
of the T-Gate is 54. 4 nm, as shown in Fig. 3. Finally,
the Ti/Au (15 nm/400 nm) connection pads were evapo-
rated for on-wafer DC and RF characteristics measure-
ments.

2 Results and discussion

DC properties were characterized by using a
HP4142 semiconductor parameter analyzer at room tem-
perature. Figure 4 (a) shows the current-voltage (I-V)
characteristics of the HEMT with L, = 54. 4 nm and gate
width W, = 2x50 pm at room temperature. The gate-
source voltage (V) is increased from -1.0 V to 0.0 V
with step of + 0.2 V, and the drain-source voltage (V)
changes from 0 Vto 1.2 V. The [, @ V. 4=0.0V is
957 mA/mm. The I, .. is enhanced compared to our pre-
viously reported InP HEMTs'"*' and is attributed to the re-
duction of gate length. The device shows a small value of
ON-resistance (R,, = 0.667 Q*mm) due to a relatively
narrow gate recess. Because the narrow gate recess leads
to reduction of R; and R,"". Moreover, the kink effect of
the device is negligible due to the introduction of the InP
etching-stopper layer.

Figure 4 (b) plots the measured transconductance
(g,) of the L, = 54. 4 nm device as a function of I, for
various vaules of Vi from 0.1 V10 0.7 Vin + 0.1 V

steps. A maximum extrinsic transconductance g of

m. max

1265 mS/mm is achieved at V,, = 0.7 V. The pinch-off
voltage is about -0.73 V at V,;, = 0.7 V as shown in
Fig. 3(c).

The RF characteristics were measured using an Agi-
lent E8363B PNA vector network analyzer from 0. 1 GHz
to 50 GHz. Before the RF test, the equipment was cali-
brated to eliminate systematic errors due to the environ-
ment or test equipment. In order to accurately obtain the
S-parameter of the device, we calibrated the test refer-
ence surface to the GSG test probe tip. The open and
short structures were used to substract pad-related capac-
itance and inductance components from measured S-pa-
rameters. Then, the values of a short-circuit current gain
(H,,) , a maximum available gain and a maximum stable
gain (MAG/MSG) , and a Mason’ s unilateral gain (U)
were plotted in Fig. 5 (a). The bias condition was at
Vi=-0.35Vand V,;=0.7 V.

Since the test frequency range was limited from 0. 1
GHz to 50 GHz, we obtained a value of f, = 441 GHz by
extrapolating the measured H, with a slope of -20 dB/
dec. Regarding f,,. ., it cannot be directly extracted from
the measured U or MAG/MSG. This is because it is diffi-
cult to observe a decline in the MAG/MSG frequency
curve with a slope of -20 dB/dec in a limited test range.
Therefore, if the frequency curve of MAG/MSG is extrap-
olated with -20 dB/dec at 50 GHz, the f,, obtained is a
conservative result. So, we constructed a small-signal
model that yielded a well behaved U with a single-pole
system, as shown in Fig. 5(b)"*. Using the small-sig-
nal model, the values of £, = 299 GHz and f, = 443 GHz
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Fig. 4 (a) DC output characteristics, (b) g, against /,, and (c)
transfer characteristics of the HEMT
El4 HEMT (a) B i HHERE (05 F, (o) fEHITEE

were estimated accurately. The measured f; ... and the
modeled f ., are similar, increasing the credibility of
our model.

The f, and f,,,
and (2):

8 i
r= (1
/ Zﬂ{(cg\ + ng)[l +g4,(R + R+ Cgligmi(Rs' +R,)} ( )
fuw = . (2)

2¢,,  C
/4g,/.\<Rg R AR+ (5 + gu(R + R))

gs gs

are expressed as equtions (1)

Where C,, and C,, are the capacitances in between gate to
source and gate to drain; R , R, and R, are the parasitic

resistances of gate, source and drain; g, is the intrinsic
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transconductance; g, is the conductance between drain
and source.

Equations (1) and (2) suggest that C,, C,,, Ry,
R,, g, and g, are the key parameters that affect f, and
JSowe Table 1 shows small-signal model parameters.
These key parameters are all related to the size of the
gate recesse and gate length. In terms of f;, the small
gate length reduces capacitances and increases g,. At
the same time, the narrow gate recess also reduces the R;
and R,. So, these affects lead to a higher f, = 441 GHz.
However, the narrow gate recesse correspond to larger
values of C,/C, , and the shorter gate length leads to larg-
er R, and g, , which leads to a smaller f, . =299 GHz.

Figure 6 plots the extracted f; as a function of [, for
the same device at V,; = 0.7 V, which consists with the
g, against [ in Fig. 4. The f, of the device exceeds 400
GHz over a wide range of /.

Table 2 shows the reported the performance of In-
GaAs/InAlAs HEMTs with L, from 50 nm to 75 nm.
What these devices have in common is that the channel
of devices are indium-rich InGaAs. And Pt buried gate
technology is used to decrease the gate-to-channel dis-
tance, resulting the excellent RF performance. Although
the values of g, .. and f, are quite different, the larger
. oo corresponds to higher f,in this table. Compared
with these results, our device achieved the f; of over 400
GHz with the lowest g, .., and we need to improve f,
through further increasing g, ... in the future.

3 Conclusion

In summary, we have successfully designed and fab-
ricated a 54.4 nm T-gate InGaAs/InAlAs InP-based
HEMT with f, > 400 GHz. In order to optimize the para-
sitic resistances, we adopt a narrow gate recess technolo-
gy. As a result, the f; reaches as high as 441 GHz with a
& e Of 1265 mS/mm. The f; is expected to be promoted
through further increasing g, ... by adopting an Indium-
rich channel and a Pt buried gate technology.
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Fig. 5 (a) The measured and modeled H,,, MAG/MSG and U
gains versus frequency for the L, = 54.4 nm InGaAs/InAlAs
HEMT at V= -0.35 V and V,, = 0.7 V, and (b) small-signal
equivalent circuit model used in pervious work!"
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Table 1 Small-signal model parameters of the Lg = 544 nm InGaAs/InAlAs HEMTs at V = 0.7 V, with different

*1 VDsStiuf)fl;rizsﬂa‘JﬂﬂKjb 54.4 nm ) InGaAs/InAlAs HEMT H/MESEE S
Cg% [fF/mm] ng [fF/mm ] C, [fF/mm ] g [mS/mm ] g [mS/mm ] R, [Qemm] Rg [Qemm]
322.1 134. 1 1124 2431 597.7 0.01 0.346 6
R, [Qemm] R [Qemm] R, [Qemm] R, [Qemm] LF— [GHz] [A— [GHz] £ o model [GHz]
0.5383 0.1599 375.9 3617 441 443 299

Table 2 Comparison with published InGaAs(InAs)/InAlAs HEMTs with L, from 50 nm to 75 nm
F2 58%FHMKEN S50 nm 275 nm i) InGaAs(InAs)/InAlAs HEMT 18R LE 5B

Ref. L /nm Gate metal Channel g, /(mS/mm) £,/GHz (V,/V) f_IGHz (V/V)

17 50 PU/Ti/PY/Au InAs 2000 496 (0. 6) 400 (0. 6)

18 50 PUTi/PY/Au In, ,Ga, ,As 1750 465 (0.75) 1060 (0. 75)

19 60 PUTi/PY/Au InAs 2100 580 (0.6) 675 (0.6)

20 60 PUTi/PY/Au InAs 2114 710 (0.5) 478 (0.5)

21 70 Ti/Pt/Au In, ,Ga, ,As 1600 310 (1.2) 540 (1.2)

22 75 Ti/PY/Au InAs 1331 260 (1.0) 800 (1.0)
This work 54. 4 Ti/Pt/Au In, ,Ga, ,As 1265 441 (0.7) 299 (0.7)
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