• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 387 (2023)
Junqi YOU1, Ce LI1, Dongliang YANG1, and Linfeng SUN1、2、*
Author Affiliations
  • 11. MOE Key Laboratory of Advanced Optoetectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 22. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
  • show less
    DOI: 10.15541/jim20220760 Cite this Article
    Junqi YOU, Ce LI, Dongliang YANG, Linfeng SUN. Double Dielectric Layer Metal-oxide Memristor: Design and Applications[J]. Journal of Inorganic Materials, 2023, 38(4): 387 Copy Citation Text show less
    References

    [1] L CHUA. Memristor-the missing circuit element. IEEE Trans. Circuit Theory, 507(1971).

    [2] D B STRUKOV, G S SNIDER, D R STEWART et al. The missing memristor found. Nature, 80(2008).

    [3] J KANG, T KIM, S HU et al. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun., 4040(2022).

    [4] T CHANG, S H JO, W LU. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 7669(2011).

    [5] S H JO, T CHANG, I EBONG et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 1297(2010).

    [6] C D WRIGHT, L WANG, M M AZIZ et al. Phase-change processors, memristors and memflectors. Phys. Status Solidi B, 1978(2012).

    [7] M YOSHIDA, R SUZUKI, Y ZHANG et al. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci Adv.(2015).

    [8] R C SOUSA, I L PREJBEANU. Non-volatile magnetic random access memories (MRAM). Comptes Rendus Physique, 1013(2005).

    [9] M C SHIH, C Y WANG, Y H LEE et al. Reliability study of perpendicular STT-MRAM as emerging embedded memory qualified for reflow soldering at 260 ℃. 2016 IEEE Symposium on VLSI Technology, Honolulu, 2(2016).

    [10] A MANCHON, J ŽELEZNÝ, I M MIRON. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys., 035004(2019).

    [11] Y T HUANG, N K CHEN, Z Z LI et al. Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage. InfoMat, e12341(2022).

    [12] N SETTER, D DAMJANOVIC, L M ENG et al. Ferroelectric thin films: review of materials, properties and applications. J. Appl. Phys., 051606(2006).

    [13] Q A VU, H KIM, V L NGUYEN et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater.(2017).

    [14] X GUO, Q WANG, X LÜ et al. SiO2/Ta2O5 heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale, 4320(2020).

    [15] M ISMAIL, H ABBAS, C CHOI et al. Stabilized and reset-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd., 155256(2020).

    [16] N ANDREEVA, D MAZING, A ROMANOV et al. Contact engineering approach to improve the linearity of multilevel memristive devices. Micromachines, 1567(2021).

    [17] M ISMAIL, H ABBAS, C MAHATA et al. Optimizing the thickness of Ta2O5 interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO2 switching layer for multilevel data storage. J. Mater. Sci. Technol., 98(2022).

    [18] Y L ZHU, K H XUE, X M CHENG et al. Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering. Appl. Surf. Sci., 149274(2021).

    [19] C SU, L SHAN, D YANG et al. Effects of heavy ion irradiation on Cu/Al2O3/Pt CBRAM devices. Microelectronic Eng., 111600(2021).

    [20] M C WU, Y H TING, J Y CHEN et al. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci.(2019).

    [21] S RAJASEKARAN, F M SIMANJUNTAK, S CHANDRASEKARAN et al. Flexible Ta2O5/WO3-based memristor synapse for wearable and neuromorphic applications. IEEE Electron Device Lett., 9(2021).

    [22] M ISMAIL, H ABBAS, A SOKOLOV et al. Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram. Int., 30764(2021).

    [23] J LIU, H YANG, Y JI et al. An electronic synaptic device based on HfO2TiOx bilayer structure memristor with self-compliance and deep-RESET characteristics. Nanotechnology, 415205(2018).

    [24] Q XIA, J J YANG. Memristive crossbar arrays for brain-inspired computing. Nat. Mater., 309(2019).

    [25] Y C CHEN, C C LIN, Y F CHANG. Post-moore memory technology: sneak path current (SPC) phenomena on RRAM crossbar array and solutions. Micromachines, 50(2021).

    [26] S G REN, R NI, X D HUANG et al. Pt/Al2O3/TaOx/Ta self-rectifying memristor with record-low operation current (<2 pA), low power (fJ), and high scalability. IEEE Trans. Electron Devices, 838(2022).

    [27] Y XI, B GAO, J TANG et al. In-memory learning with analog resistive switching memory: a review and perspective. Proceedings of the IEEE, 14(2021).

    [28] P Y CHEN, X PENG, S YU. NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco(2017).

    [29] P Y CHEN, S YU. Technological benchmark of analog synaptic devices for neuroinspired architectures. IEEE Des. Test, 31(2019).

    [30] J WOO, K MOON, J SONG et al. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett., 994(2016).

    [32] J J YANG, F MIAO, M D PICKETT et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 215201(2009).

    [33] G Q MAO, K H XUE, Y Q SONG et al. Oxygen migration around the filament region in HfOxmemristors. AIP Advances, 105007(2019).

    [34] Y YANG, W LU. Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale, 10076(2013).

    [35] Z ZHANG, D YANG, H LI et al. 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorph. Comput. Eng., 032004(2022).

    [36] U CELANO, L GOUX, A BELMONTE et al. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett., 2401(2014).

    [37] Y YANG, P GAO, S GABA et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun., 732(2012).

    [38] C LI, B GAO, Y YAO et al. Direct observations of nanofilament evolution in switching processes in HfO2 based resistive random access memory by in situ TEM studies. Adv. Mater.(2017).

    [39] F MIAO, J P STRACHAN, J J YANG et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high performance memristor. Adv. Mater., 5633(2011).

    [41] S DESHMUKH, M M ROJO, E YALON et al. Direct measurement of nanoscale filamentary hot spots in resistive memory devices. Sci. Adv.(2022).

    [42] J P STRACHAN, D B STRUKOV, J BORGHETTI et al. The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology, 254015(2011).

    [43] F WU, S SI, P CAO et al. Interface engineering via MoS2insertion layer for improving resistive switching of conductive bridging random access memory. Adv. Electron. Mater.(2019).

    [44] Y Y CHEN, R ROELOFS, A REDOLFI et al. Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants. 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu(2014).

    [45] B WANG, K H XUE, H J SUN et al. Performance enhancement of TaOx resistive switching memory using graded oxygen content. Appl. Phys. Lett., 183501(2018).

    [46] C D LANDON, R H T WILKE, M T BRUMBACH et al. Thermal transport in tantalum oxide films for memristive applications. Appl. Phys. Lett., 023108(2015).

    [47] X D HUANG, Y LI, H Y LI et al. Enhancement of DC/AC resistive switching performance in AlOx memristor by two technique bilayer approach. Appl. Phys. Lett., 173504(2020).

    [48] Q DUAN, L XU, J ZHU et al. Resistive switching and synaptic plasticity in HfO2-based memristors with single-layer and bilayer structures. 2018 China Semiconductor Technology International Conference (CSTIC), Shanghai(2018).

    [49] X D HUANG, Y LI, H Y LI et al. Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor. IEEE Electron Device Lett., 549(2020).

    [50] X D HUANG, Y LI, H Y LI et al. Low-power, high speed and high uniform switching in AlOx-based memristor using homogeneous bilayer structure for memcomputing. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Chengdu(2019).

    [51] S CHOI, P SHERIDAN, W D LU. Data clustering using memristor networks. Sci. Rep., 10492(2015).

    [52] X WANG, W LIAO, T RAO et al. Resistive switching in sputtered ZnO/IGZO heterostructure memristor. 2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu(2022).

    [53] Z XU, L YU, X XU et al. Effect of oxide/oxide interface on polarity dependent resistive switching behavior in ZnO/ZrO2 heterostructures. Appl. Phys. Lett., 192903(2014).

    [54] J ZHU, J W LEE, H LEE et al. Probing vacancy behavior across complex oxide heterointerfaces. Sci. Adv.(2019).

    [55] S CHANDRASEKARAN, F M SIMANJUNTAK, R SAMINATHAN et al. Improving linearity by introducing Al in HfO2 as a memristor synapse device. Nanotechnology, 445205(2019).

    [56] Z ZHANG, Y CAI, M YU et al. A tantalum oxide memristor for artificial synapse applications. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin(2014).

    [57] A MIKHAYLOV, A BELOV, D KOROLEV et al. Multilayer metal-oxide memristive device with stabilized resistive switching. Adv. Mater. Technol.(2020).

    [58] P BOUSOULAS, D SAKELLAROPOULOS, D TSOUKALAS et al. Tuning the analog synaptic properties of forming free SiO2 memristors by material engineering. Appl. Phys. Lett., 143502(2021).

    [59] H KIM, M R MAHMOODI, H NILI et al. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun., 5198(2021).

    [60] F WU, P CAO, Z PENG et al. Memristor based on TiOx/Al2O3 bilayer as flexible artificial synapse for neuromorphic electronics. IEEE Trans. Electron Device, 375(2021).

    [61] Y ZHONG, J TANG, X LI et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 408(2021).

    [62] S CHOI, S JANG, J H MOON et al. A self-rectifying TaOy/ nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater., 1097(2018).

    [63] H J KIM, T H PARK, K J YOON et al. Fabrication of a Cu-cone-shaped cation source inserted conductive bridge random access memory and its improved switching reliability. Adv. Funct. Mater.(2019).

    [64] H J KIM, J KIM, T G PARK et al. Multi-level control of conductive filament evolution and enhanced resistance controllability of the Cu-cone structure embedded conductive bridge random access memory. Adv. Electron. Mater.(2022).

    Junqi YOU, Ce LI, Dongliang YANG, Linfeng SUN. Double Dielectric Layer Metal-oxide Memristor: Design and Applications[J]. Journal of Inorganic Materials, 2023, 38(4): 387
    Download Citation