• Photonics Research
  • Vol. 12, Issue 5, 1044 (2024)
Xiaohan Jiang1、†, Wanying Liu1、†, Quan Xu1、*, Yuanhao Lang1, Yikai Fu2, Fan Huang1, Haitao Dai2, Yanfeng Li1, Xueqian Zhang1, Jianqiang Gu1, Jiaguang Han1、3、5, and Weili Zhang4、6
Author Affiliations
  • 1Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
  • 3Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 4School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 5e-mail: jiaghan@tju.edu.cn
  • 6e-mail: weili.zhang@okstate.edu
  • show less
    DOI: 10.1364/PRJ.519701 Cite this Article Set citation alerts
    Xiaohan Jiang, Wanying Liu, Quan Xu, Yuanhao Lang, Yikai Fu, Fan Huang, Haitao Dai, Yanfeng Li, Xueqian Zhang, Jianqiang Gu, Jiaguang Han, Weili Zhang. On-chip terahertz orbital angular momentum demultiplexer[J]. Photonics Research, 2024, 12(5): 1044 Copy Citation Text show less
    References

    [1] I. F. Akyildiz, J. M. Jornet, C. Han. Terahertz band: next frontier for wireless communications. Phys. Commun., 12, 16-32(2014).

    [2] H. Tataria, M. Shafi, A. F. Molisch. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc. IEEE, 109, 1166-1199(2021).

    [3] S. Koenig, D. Lopez-Diaz, J. Antes. Wireless sub-THz communication system with high data rate. Nat. Photonics, 7, 977-981(2013).

    [4] A. Kumar, M. Gupta, P. Pitchappa. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun., 13, 5404(2022).

    [5] Z. Sun, C. Liang, C. Chen. High-efficiency dynamic terahertz deflector utilizing a mechanically tunable metasurface. Research, 6, 0274(2023).

    [6] H. Zeng, H. Liang, Y. Zhang. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip. Nat. Photonics, 15, 751-757(2021).

    [7] D. Headland, W. Withayachumnankul, M. Fujita. Gratingless integrated tunneling multiplexer for terahertz waves. Optica, 8, 621-629(2021).

    [8] Y. Zhang, K. Ding, H. Zeng. Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling. Optica, 9, 1268-1275(2022).

    [9] J. Ma, N. J. Karl, S. Bretin. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun., 8, 729(2017).

    [10] Y. Feng, B. Zhang, Y. Liu. A 200–225-GHz manifold-coupled multiplexer utilizing metal waveguides. IEEE Trans. Microwave Theory Tech., 69, 5327-5333(2021).

    [11] J. Wang, J.-Y. Yang, I. M. Fazal. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [12] Y. Yan, G. Xie, M. P. J. Lavery. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [13] L.-W. Luo, N. Ophir, C. P. Chen. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).

    [14] T. Lei, M. Zhang, Y. Li. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [15] N. Oshima, K. Hashimoto, S. Suzuki. Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators. IEEE Trans. Terahertz Sci. Technol., 7, 593-598(2017).

    [16] W. Deng, L. Chen, H. Zhang. On-chip polarization- and frequency-division demultiplexing for multidimensional terahertz communication. Laser Photonics Rev., 16, 2200136(2022).

    [17] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [18] A. H. Dorrah, N. A. Rubin, A. Zaidi. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [19] L. Zhang, T. J. Cui. Space-time-coding digital metasurfaces: principles and applications. Research, 2021, 9802673(2021).

    [20] H. Chung, D. Kim, E. Choi. E-band metasurface-based orbital angular momentum multiplexing and demultiplexing. Laser Photonics Rev., 16, 2100456(2022).

    [21] T. Stav, A. Faerman, E. Maguid. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

    [22] H. Zhou, B. Sain, Y. Wang. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano, 14, 5553-5559(2020).

    [23] S. Zhang, P. Huo, W. Zhu. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photonics Rev., 14, 2000062(2020).

    [24] S. Li, X. Li, L. Zhang. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv. Opt. Mater., 8, 1901666(2020).

    [25] K. Zhang, Y. Yuan, X. Ding. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photonics Rev., 15, 2000351(2020).

    [26] Y. Li, X. Li, L. Chen. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater., 5, 1600502(2017).

    [27] R. Zhang, Y. Guo, X. Li. Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals. Adv. Opt. Mater., 12, 2300009(2023).

    [28] X. Li, C. Chen, Y. Guo. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv. Funct. Mater., 34, 2311286(2024).

    [29] K. Ou, G. Li, T. Li. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 10, 19154-19161(2018).

    [30] H. Zhao, B. Quan, X. Wang. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 5, 1726-1732(2018).

    [31] H. Yang, S. Zheng, H. Zhang. A THz-OAM wireless communication system based on transmissive metasurface. IEEE Trans. Antennas Propag., 71, 4194-4203(2023).

    [32] P. Genevet, J. Lin, M. A. Kats. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun., 3, 1278(2012).

    [33] Z. Yue, H. Ren, S. Wei. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film. Nat. Commun., 9, 4413(2018).

    [34] Y. Lang, Q. Xu, X. Chen. On-chip plasmonic vortex interferometers. Laser Photonics Rev., 16, 2200242(2022).

    [35] J. S. Q. Liu, R. A. Pala, F. Afshinmanesh. A submicron plasmonic dichroic splitter. Nat. Commun., 2, 525(2011).

    [36] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [37] S. Liu, T. Jun Cui, A. Noor. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light Sci. Appl., 7, 18008(2018).

    [38] D. Tyagi, T.-Y. Chen, C.-B. Huang. Polarization-enabled steering of surface plasmons using crossed reciprocal nanoantennas. Laser Photonics Rev., 14, 2000076(2020).

    [39] J. Han, Y. Xu, H. Zhang. Tailorable polarization-dependent directional coupling of surface plasmons. Adv. Funct. Mater., 32, 2111000(2022).

    [40] L. Chen, N. Xu, L. Singh. Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv. Opt. Mater., 5, 1600960(2017).

    [41] J. Lyu, S. Shen, L. Chen. Frequency selective fingerprint sensor: the terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement. PhotoniX, 4, 28(2023).

    [42] F. Feng, G. Si, C. Min. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl., 9, 95(2020).

    [43] X. Zhao, X. Feng, F. Liu. A compound phase-modulated beam splitter to distinguish both spin and orbital angular momentum. ACS Photonics, 7, 212-220(2020).

    [44] A. Tomita, R. Y. Chiao. Observation of Berry’s topological phase by use of an optical fiber. Phys. Rev. Lett., 57, 937-940(1986).

    [45] E. Maguid, I. Yulevich, M. Yannai. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl., 6, e17027(2017).

    [46] T. V. Teperik, A. Archambault, F. Marquier. Huygens-Fresnel principle for surface plasmons. Opt. Express, 17, 17483-17490(2009).

    [47] X. Jiang, Q. Xu, Y. Lang. Geometric phase control of surface plasmons by dipole sources. Laser Photonics Rev., 17, 2200948(2023).

    [48] W. Liu, Q. Yang, Q. Xu. Multichannel terahertz quasi-perfect vortex beams generation enabled by multifunctional metasurfaces. Nanophotonics, 11, 3631-3640(2022).

    [49] Y. Zhang, Y. Xu, C. Tian. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res., 6, 18-23(2018).

    [50] M. Yuan, Q. Wang, Y. Li. Terahertz spoof surface plasmonic logic gates. iScience, 23, 101685(2020).

    [51] A. E. Willner, H. Huang, Y. Yan. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [52] A. A. Sirenko, P. Marsik, C. Bernhard. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett., 122, 237401(2019).

    [53] S. Qiu, Y. Ren, T. Liu. Spinning object detection based on perfect optical vortex. Opt. Lasers Eng., 124, 105842(2020).

    [54] A. N. Agafonov, Y. Y. Choporova, A. K. Kaveev. Control of transverse mode spectrum of Novosibirsk free electron laser radiation. Appl. Opt., 54, 3635-3639(2015).

    [55] K. Aoki, A. Okamoto, Y. Wakayama. Selective multimode excitation using volume holographic mode multiplexer. Opt. Lett., 38, 769-771(2013).

    [56] Y. Zhang, W. Liu, J. Gao. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mater., 6, 1701228(2018).

    [57] H. Zhang, X. Zhang, Q. Xu. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv. Opt. Mater., 6, 1700773(2018).

    [58] F. Huang, Q. Xu, W. Liu. Generating superposed terahertz perfect vortices via a spin-multiplexed all-dielectric metasurface. Photonics Res., 11, 431-441(2023).

    [59] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev. Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments. Opt. Express, 27, 11236-11251(2019).

    [60] I. A. Litvin, A. Dudley, A. Forbes. Poynting vector and orbital angular momentum density of superpositions of Bessel beams. Opt. Express, 19, 16760-16771(2011).

    Xiaohan Jiang, Wanying Liu, Quan Xu, Yuanhao Lang, Yikai Fu, Fan Huang, Haitao Dai, Yanfeng Li, Xueqian Zhang, Jianqiang Gu, Jiaguang Han, Weili Zhang. On-chip terahertz orbital angular momentum demultiplexer[J]. Photonics Research, 2024, 12(5): 1044
    Download Citation