[1] H. Iwamura, S. Hayashi, H. Iwasaki. A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation. Opt. Quantum Electron., 10, 393-398(1978).
[2] D. J. Gauthier, P. Narum, R. W. Boyd. Simple, compact, high-performance permanent-magnet Faraday isolator. Opt. Lett., 11, 623-625(1986).
[3] H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A. F. Popkov. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B, 22, 240-253(2005).
[4] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics, 5, 758-762(2011).
[5] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).
[6] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91-94(2009).
[7] N. A. Estep, D. L. Sounas, J. Soric, A. Alù. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys., 10, 923-927(2014).
[8] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).
[9] C. W. Peterson, W. A. Benalcazar, M. Lin, T. L. Hughes, G. Bahl. Strong nonreciprocity in modulated resonator chains through synthetic electric and magnetic fields. Phys. Rev. Lett., 123, 063901(2019).
[10] K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, J. Twamley. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A, 90, 043802(2014).
[11] L. Tang, J. Tang, W. Zhang, G. Lu, H. Zhang, Y. Zhang, K. Xia, M. Xiao. On-chip chiral single-photon interface: isolation and unidirectional emission. Phys. Rev. A, 99, 043833(2019).
[12] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, A. Rauschenbeutel. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X, 5, 041036(2015).
[13] M. Scheucher, A. Hilico, E. Will, J. Volz, A. Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577-1580(2016).
[14] K. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).
[15] S. Zhang, Y. Hu, G. Lin, Y. Niu, K. Xia, J. Gong, S. Gong. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photonics, 12, 744-748(2018).
[16] C. Liang, B. Liu, A.-N. Xu, X. Wen, C. Lu, K. Xia, M. K. Tey, Y.-C. Liu, L. You. Collision-induced broadband optical nonreciprocity. Phys. Rev. Lett., 125, 123901(2020).
[17] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, S.-Y. Zhu. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).
[18] S. A. R. Horsley, J.-H. Wu, M. Artoni, G. C. La Rocca. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett., 110, 223602(2013).
[19] H. Ramezani, P. K. Jha, Y. Wang, X. Zhang. Nonreciprocal localization of photons. Phys. Rev. Lett., 120, 043901(2018).
[20] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).
[21] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).
[22] X. Xu, Y. Zhao, H. Wang, H. Jing, A. Chen. Quantum nonreciprocality in quadratic optomechanics. Photon. Res., 8, 143-150(2020).
[23] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, M. Qi. An all-silicon passive optical diode. Science, 335, 447-450(2012).
[24] L. Del Bino, J. M. Silver, M. T. M. Woodley, S. L. Stebbings, X. Zhao, P. Del’Haye. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica, 5, 279-282(2018).
[25] D. L. Sounas, A. Alù. Fundamental bounds on the operation of Fano nonlinear isolators. Phys. Rev. B, 97, 115431(2018).
[26] Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, J. Mork. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photon. Rev., 9, 241-247(2015).
[27] D. L. Sounas, J. Soric, A. Alù. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron., 1, 113-119(2018).
[28] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, J. Vučković. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics, 14, 369-374(2020).
[29] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).
[30] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).
[31] P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang, T. Zhang. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity. Phys. Rev. Lett., 123, 233604(2019).
[32] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).
[33] H. Pichler, P. Zoller. Photonic circuits with time delays and quantum feedback. Phys. Rev. Lett., 116, 093601(2016).
[34] P.-O. Guimond, H. Pichler, A. Rauschenbeutel, P. Zoller. Chiral quantum optics with V-level atoms and coherent quantum feedback. Phys. Rev. A, 94, 033829(2016).
[35] J. Zhang, R.-B. Wu, Y.-X. Liu, C.-W. Li, T.-J. Tarn. Quantum coherent nonlinear feedback with applications to quantum optics on chip. IEEE Trans. Autom. Control, 57, 1997-2008(2012).
[36] J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, F. Nori. Quantum feedback: theory, experiments, and applications. Phys. Rep., 679, 1-60(2017).
[37] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).
[38] K. Xia, J. Twamley. All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X, 3, 031013(2013).
[39] D. Drung, C. Krause, U. Becker, H. Scherer, F. J. Ahlers. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy. Rev. Sci. Instrum., 86, 024703(2015).
[40] C. Saavedra, D. Pandey, W. Alt, H. Pfeifer, D. Meschede. Tunable fiber Fabry-Perot cavities with high passive stability. Opt. Express, 29, 974-982(2021).
[41] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431, 162-167(2004).
[42] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori. Microwave photonics with superconducting quantum circuits. Phys. Rep., 718-719, 1-102(2017).
[43] M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, P. Delsing. Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett., 92, 203501(2008).
[44] M. A. Castellanos-Beltran, K. W. Lehnert. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator. Appl. Phys. Lett., 91, 083509(2007).
[45] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nat. Phys., 7, 154-158(2011).
[46] Q. Cheng, S. Rumley, M. Bahadori, K. Bergman. Photonic switching in high performance datacenters [Invited]. Opt. Express, 26, 16022-16043(2018).
[47] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner. What is—and what is not—an optical isolator. Nat. Photonics, 7, 579-582(2013).