• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 1, 103 (2024)
LIU Xueming, CHEN Yongcong*, and AO Ping
Author Affiliations
  • College of Sciences, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.01.010 Cite this Article
    Xueming LIU, Yongcong CHEN, Ping AO. Quantum control optimization in thermal noise environment[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 103 Copy Citation Text show less
    References

    [1] Wendin G. Quantum information processing with superconducting circuits: A review[J]. Reports on Progress in Physics, 80, 106001(2017).

    [2] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).

    [3] Paik H, Schuster D I, Bishop L S et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture[J]. Physical Review Letters, 107, 240501(2011).

    [4] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).

    [5] Arrazola J M, Bergholm V, Brádler K et al. Quantum circuits with many photons on a programmable nanophotonic chip[J]. Nature, 591, 54-60(2021).

    [6] Bruzewicz C D, Chiaverini J, McConnell R et al. Trapped-ion quantum computing: Progress and challenges[J]. Applied Physics Reviews, 6, 021314(2019).

    [7] Blatt R, Roos C F. Quantum simulations with trapped ions[J]. Nature Physics, 8, 277-284(2012).

    [8] Kim Y S, Lee J C, Kwon O et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal[J]. Nature Physics, 8, 117-120(2012).

    [9] Roffe J. Quantum error correction: An introductory guide[J]. Contemporary Physics, 60, 226-245(2019).

    [10] Reed M D, DiCarlo L, Nigg S E et al. Realization of three-qubit quantum error correction with superconducting circuits[J]. Nature, 482, 382-385(2012).

    [11] Guéry-Odelin D, Ruschhaupt A, Kiely A et al. Shortcuts to adiabaticity: Concepts, methods, and applications[J]. Reviews of Modern Physics, 91, 045001(2019).

    [12] Berry M V. Transitionless quantum driving[J]. Journal of Physics A: Mathematical and Theoretical, 42, 365303(2009).

    [13] Emmanouilidou A, Zhao X G, Ao P et al. Steering an eigenstate to a destination[J]. Physical Review Letters, 85, 1626-1629(2000).

    [14] Khaneja N, Reiss T, Kehlet C et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance, 172, 296-305(2005).

    [15] Konnov A I, Krotov V F. On global methods for the successive improvement of control processes[J]. Avtomatika i Telemekhanika, 77-78(1999).

    [16] Wu R B, Chu B, Owens D H et al. Data-driven gradient algorithm for high-precision quantum control[J]. Physical Review A, 97, 042122(2018).

    [17] Eitan R, Mundt M, Tannor D J. Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods[J]. Physical Review A, 83, 053426(2011).

    [18] Hwang B, Goan H S. Optimal control for non-Markovian open quantum systems[J]. Physical Review A, 85, 032321(2012).

    [19] Rebentrost P, Serban I, Schulte-Herbrüggen T et al. Optimal control of a qubit coupled to a non-Markovian environment[J]. Physical Review Letters, 102, 090401(2009).

    [20] Manzano D. A short introduction to the Lindblad master equation[J]. AIP Advances, 10, 025106(2020).

    [21] Omkar S, Srikanth R, Banerjee S. The operator-sum-difference representation of a quantum noise channel[J]. Quantum Information Processing, 14, 2255-2269(2015).

    [22] Nielsen M A, Chuang I L[M]. Quantum Computation and Quantum Information(2010).

    [23] Benedetti C, Paris M G A, Maniscalco S. Non-Markovianity of colored noisy channels[J]. Physical Review A, 89, 012114(2014).

    [24] Bhattacharya S, Chaudhury P, Chattopadhyay S et al. Directed motion in a periodic potential of a quantum system coupled to a heat bath driven by a colored noise[J]. Physical Review E, 78, 021123(2008).

    [25] Alscher A, Grabert H. Semiclassical dynamics of a spin-½ in an arbitrary magnetic field[J]. Journal of Physics A: Mathematical and General, 32, 4907-4919(1999).

    [26] Ran D, Shan W J, Shi Z C et al. Pulse reverse engineering for controlling two-level quantum systems[J]. Physical Review A, 101, 023822(2020).

    [27] Wu Q C, Chen Y H, Huang B H et al. Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems[J]. Physical Review A, 94, 053421(2016).

    [28] Ao P. Potential in stochastic differential equations: Novel construction[J]. Journal of Physics A: Mathematical and General, 37, L25-L30(2004).

    [29] Kubo R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 29, 255-284(1966).

    [30] Kwon C, Ao P, Thouless D J. Structure of stochastic dynamics near fixed points[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13029-13033(2005).

    [31] Chen Y C. Theory of quantum dynamics in Fermionic environment: An influence functional approach[J]. Journal of Statistical Physics, 47, 17-55(1987).

    [32] Barzilai J, Borwein J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 8, 141-148(1988).

    Xueming LIU, Yongcong CHEN, Ping AO. Quantum control optimization in thermal noise environment[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 103
    Download Citation