• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 3, 314 (2024)
Yan-Hui XING1、*, Wen-Xin HE1、3, Zi-Shuo HAN1, Bao-Lu GUAN1, Hai-Xin MA1、3, Xiao-Hui MA2, Jun HAN1, Wen-Hua SHI3, Bao-Shun ZHANG3, Wei-Ming LYU3、**, and Zhong-Ming ZENG3
Author Affiliations
  • 1Key Laboratory of Opto-electronics Technology,Ministry of Education,College of Microelectronics,Beijing University of Technology,Beijing 100124,China
  • 2State key Laboratory of High Power semiconductor laser of Changchun University of Science and Technology,Changchun 130022,China
  • 3Nanofabrication facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.03.004 Cite this Article
    Yan-Hui XING, Wen-Xin HE, Zi-Shuo HAN, Bao-Lu GUAN, Hai-Xin MA, Xiao-Hui MA, Jun HAN, Wen-Hua SHI, Bao-Shun ZHANG, Wei-Ming LYU, Zhong-Ming ZENG. Ultrasensitive and broad-spectrum photodetectors based on InSe/MoTe2 heterostructure[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 314 Copy Citation Text show less
    References

    [1] M Long, P Wang, H Fang et al. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 29, 1803807(2019).

    [2] D Akinwande, C Huyghebaert, C-H Wang et al. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507-518(2019).

    [3] D De Fazio, I Goykhman, D Yoon et al. High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS nano, 10, 8252-8262(2016).

    [4] W Zhang, M-H Chiu, C-H Chen et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS nano, 8, 8653-8661(2014).

    [5] S H Yu, Y Lee, S K Jang et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS nano, 8, 8285-8291(2014).

    [6] Y Wang, E Liu, A Gao et al. Negative Photoconductance in van der Waals Heterostructure-Based Floating Gate Phototransistor. ACS nano, 12, 9513-9520(2018).

    [7] Z Hu, P L Hernández-Martínez, X Liu et al. Trion-Mediated Förster Resonance Energy Transfer and Optical Gating Effect in WS2/hBN/MoSe2 Heterojunction. ACS nano, 14, 13470-13477(2020).

    [8] W S Yun, S Han, S C Hong et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). Phys. Rev. B, 85, 033305(2012).

    [9] C Ruppert, O B Aslan, T Heinz. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano letters, 14, 6231-6236(2014).

    [10] D H Keum, S Cho, J H Kim et al. Bandgap opening in few-layered monoclinic MoTe2. Nature Physics, Nature Publishing Group, 11, 482-486(2015).

    [11] L Yin, X Zhan, K Xu et al. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Applied Physics Letters, 108, 043503(2016).

    [12] A Pezeshki, S H H Shokouh, T Nazari et al. Electric and Photovoltaic Behavior of a Few-Layer α-MoTe2 /MoS2 Dichalcogenide Heterojunction. Advanced Materials, 28, 3216-3222(2016).

    [13] J Xu, Y J Song, J-H Park et al. Graphene/black phosphorus heterostructured photodetector. Solid-State Electronics, 144, 86-89(2018).

    [14] W Chen, R Liang, S Zhang et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Research, 13, 127-132(2020).

    [15] H Huang, J Wang, W Hu et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, IOP Publishing, 27, 445201(2016).

    [16] S Lei, F Wen, L Ge et al. An Atomically Layered InSe Avalanche Photodetector. Nano Letters, American Chemical Society, 15, 3048-3055(2015).

    [17] W Luo, Y Cao, P Hu et al. Gate Tuning of High-Performance InSe-Based Photodetectors Using Graphene Electrodes. Advanced Optical Materials, 3, 1418-1423(2015).

    [18] G W Mudd, S A Svatek, L Hague et al. High Broad-Band Photoresponsivity of Mechanically Formed InSe–Graphene van der Waals Heterostructures. Advanced Materials, 27, 3760-3766(2015).

    [19] Y Sun, W Gao, X Li et al. Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions. Journal of Materials Chemistry C, The Royal Society of Chemistry, 9, 10372-10380(2021).

    [20] F Yan, L Zhao, A Patanè et al. Fast multicolor photodetectors based on graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology, 28, 27LT01(2017).

    [21] M Dai, H Chen, F Wang et al. Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. ACS nano, 14, 9098-9106(2020).

    [22] J-J Tao, J Jiang, S-N Zhao et al. Fabrication of 1D Te/2D ReS2 Mixed-Dimensional van der Waals p-n Heterojunction for High-Performance Phototransistor. ACS nano, 15, 3241-3250(2021).

    [23] B Kang, Y Kim, W J Yoo et al. Ultrahigh Photoresponsive Device Based on ReS2 /Graphene Heterostructure. Small, 14, e1802593(2018).

    [24] L Tu, R Cao, X Wang et al. Ultrasensitive negative capacitance phototransistors. Nature Communications, 11, 101(2020).

    [25] Y Yan, G Abbas, F Li et al. Self-Driven High Performance Broadband Photodetector Based on SnSe/InSe van der Waals Heterojunction. Advanced Materials Interfaces, 9, 2102068(2022).

    [26] Y Zhang, S Li, Z Li et al. High-Performance Two-Dimensional Perovskite Ca2Nb3O10UV Photodetectors. Nano Letters, 21, 382-388(2021).

    [27] H Ma, Y Xing, J Han et al. Ultrasensitive and Broad‐Spectrum Photodetectors Based on InSe/ReS2 Heterostructure. Advanced Optical Materials, 10, 2101772(2022).

    [28] J-H Huang, H-H Hsu, D Wang et al. Polymorphism Control of Layered MoTe2 through Two-Dimensional Solid-Phase Crystallization. Scientific Reports, 9, 8810(2019).

    [29] S Das, H-Y Chen, A V Penumatcha et al. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Letters, 13, 100-105(2013).

    [30] N Huo, G Konstantatos. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nature Communications, 8, 572(2017).

    [31] Y Sun, W Song, F Gao et al. In Situ Conformal Coating of Polyaniline on GaN Microwires for Ultrafast, Self-Driven Heterojunction Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 12, 13473-13480(2020).

    [32] K Zhang, M Peng, A Yu et al. A substrate-enhanced MoS2 photodetector through a dualphotogating effect. Materials Horizons, 6, 826-833(2019).

    [33] J Xu, K Rechav, R Popovitz-Biro et al. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. Advanced Materials, 30, e1800413(2018).

    [34] R Cao, H Wang, Z Guo et al. Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Near‐Infrared Light with High Sensitivity. Advanced Optical Materials, 7, 1900020(2019).

    [35] C Lan, C Li, S Wang et al. High responsive and broadband photodetectors based on WS2-graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 5, 1494-1500(2017).

    [36] D Zhao, Y Chen, W Jiang et al. Gate-Tunable Photodiodes Based on Mixed-Dimensional Te/MoTe2 Van der Waals Heterojunctions. Advanced Electronic Materials, 7, 2001066(2021).

    [37] G Shin, C Park, K Lee et al. Ultrasensitive Phototransistor Based on WSe2-MoS2 van der Waals Heterojunction. Nano Letters, 20, 5741-5748(2020).

    [38] K Thakar, B Mukherjee, S Grover et al. Multilayer ReS2 Photodetectors with Gate Tunability for High Responsivity and High-Speed Applications. ACS applied materials & interfaces, 10, 36512-36522(2018).

    [39] B Mukherjee, M A Zulkefli, R Hayakawa et al. Enhanced Quantum Efficiency in Vertical Mixed-thickness n-ReS2/p-Si Heterojunction Photodiodes. ACS Photonics, 6, 2277-2286(2019).

    Yan-Hui XING, Wen-Xin HE, Zi-Shuo HAN, Bao-Lu GUAN, Hai-Xin MA, Xiao-Hui MA, Jun HAN, Wen-Hua SHI, Bao-Shun ZHANG, Wei-Ming LYU, Zhong-Ming ZENG. Ultrasensitive and broad-spectrum photodetectors based on InSe/MoTe2 heterostructure[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 314
    Download Citation