[4] Chen T, Chefd’Hotel C. Deep learning based automatic immune cell detection for immunohistochemistry images. In: International workshop on machine learning in medical imaging. Springer; 2014. p. 17–24.
[5] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241.
[6] Liu MY, Breuel T, Kautz J. Unsupervised image-to-image translation networks. Adv Neural Inf Process Syst. 2017;30. https://proceedings.neurips.cc/paper_files/paper/2017/hash/dc6a6489640ca02b0d42dabeb8e46bb7-Abstract.html.
[7] Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. Computer Vision Foundation; 2017. p. 2223–32.
[8] Zhang Y, Tang F, Dong W, Huang H, Ma C, Lee TY, et al. Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning. arXiv preprint arXiv:2205.09542. 2022.
[9] Kingma DP, Dhariwal P. Glow: Generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst. 2018;31.
[11] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.
[12] Saharia C, Chan W, Chang H, Lee C, Ho J, Salimans T, et al. Palette: Image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings. Association for Computing Machinery; 2022. p. 1–10.
[14] Jiang H, Zhou Y, Lin Y, Chan RC, Liu J, Chen H. Deep Learning for Computational Cytology: A Survey. arXiv preprint arXiv:2202.05126. 2022.
[17] Rivenson Y, de Haan K, Wallace WD, Ozcan A. Emerging advances to transform histopathology using virtual staining. BME Front. 2020:9647163.
[23] Gupta L, Klinkhammer BM, Boor P, Merhof D, Gadermayr M. GAN-Based Image Enrichment in Digital Pathology Boosts Segmentation Accuracy. Med Image Comput Comput Assist Interv Miccai 2019, Pt I. 2019;11764:631–639. .
[26] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;27. https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.
[27] Rana A, Yaunery G, Lowe A, Shah P. Computational Histological Staining and Destaining of Prostate Core Biopsy RGB Images with Generative Adversarial Neural Networks. In: 2018 17th Ieee International Conference on Machine Learning and Applications (Icmla). 2018. p. 828–834. .
[28] Shaban MT, Baur C, Navab N, Albarqouni S. Staingan: Stain style transfer for digital histological images. In: 2019 Ieee 16th international symposium on biomedical imaging (Isbi 2019). IEEE; 2019. p. 953–956.
[30] Ye S, Zou J, Huang C, Xiang F, Wen Z, Wang N, et al. Rapid and label-free histological imaging of unprocessed surgical tissues via Dark-field Reflectance Ultraviolet Microscopy. iScience. 2022;105849.
[33] Bocklitz TW, Salah FS, Vogler N, Heuke S, Chernavskaia O, Schmidt C, et al. Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer. 2016;16. .
[34] de Haan K, Zhang Y, Zuckerman JE, Liu T, Sisk AE, Diaz MF, et al. Deep learning-based transformation of H &E stained tissues into special stains. Nat Commun. 2021;12(1):1–13.
[35] Opstad I. Data set: Fluorescence microscopy videos of mitochondria in H9c2 cardiomyoblasts. DataverseNO. 2023. .
[36] Hong Y, Heo YJ, Kim B, Lee D, Ahn S, Ha SY, et al. Deep learning-based virtual cytokeratin staining of gastric carcinomas to measure tumor-stroma ratio. Sci Rep. 2021;11(1). .
[41] Drexler W, Fujimoto JG, et al. Optical coherence tomography: technology and applications. vol. 2. Springer; 2015.
[43] Mari JM, Aung T, Cheng CY, Strouthidis NG, Girard MJA. A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head. Transl Vis Sci Technol. 2017;6(1). .
[48] Cooke CL, Kong F, Chaware A, Zhou KC, Kim K, Xu R, et al. Physics-enhanced machine learning for virtual fluorescence microscopy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Computer Vision Foundation; 2021. p. 3803–3813.
[49] Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem EJH. 2014;58(4):2461.
[50] Li XY, Zhang GX, Qiao H, Bao F, Deng Y, Wu JM, et al. Unsupervised content-preserving transformation for optical microscopy. Light-Sci Appl. 2021;10(1). .
[54] Schürmann S, Weber C, Fink RH, Vogel M. Myosin Rods are a Source of Second Harmonic Generation Signals in Skeletal Muscle. In: Proceedings Volume 6442, Multiphoton Microscopy in the Biomedical Sciences VII; 2007. p. 64421U. .
[56] Rosencwaig A. Photoacoustics and Photoacoustic Spectroscopy. vol. 57. Wiley; 1980. ISBN 10: 0894644505.
[57] Xu M, Wang LV. Photoacoustic Imaging in Biomedicine. Rev Sci Instrum. 2006;77(4):041101.
[58] Yao J, Wang LV. Photoacoustic microscopy. Laser Photonics Rev. 2013;7(5):758–78.
[59] Kang L, Li XF, Zhang Y, Wong TTW. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining. Photoacoustics. 2022;25. .
[60] Li X, Kang L, Lo CT, Tsang VT, Wong TT. High-Speed Ultraviolet Photoacoustic Microscopy for Histological Imaging with Virtual-Staining assisted by Deep Learning. J Visualized Exp Jove. 2022;(182).
[61] Boktor M, Ecclestone B, Pekar V, Dinakaran D, Mackey JR, Fieguth P, et al. Deep-Learning-Based Virtual H&E Staining Using Total-Absorption Photoacoustic Remote Sensing (TA-PARS). In: Sci Rep. 2022;12:10296. .
[64] Stefanchik D. Endoscopic Tissue Resection Device. Google Patents; 2010. US Patent 7,780,691.
[67] Wright DK, Manos MM. Sample Preparation from Paraffin-Embedded Tissues. PCR Protocol Guide Methods Appl. 1990;19:153–9.
[71] Rivenson Y, Liu TR, Wei ZS, Zhang Y, de Haan K, Ozcan A. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light-Sci Appl. 2019;8. .
[72] Zhang YJ, de Haan K, Rivenson Y, Li JX, Delis A, Ozcan A. Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light-Sci Appl. 2020;9(1). .
[73] Zhang Y, de Haan K, Li J, Rivenson Y, Ozcan A. Neural network-based multiplexed and micro-structured virtual staining of unlabeled tissue. In: Conference on Lasers and Electro-Optics, Technical Digest Series (Optica Publishing Group, 2022), paper ATh2I.2.
[74] Bautista PA, Yagi Y. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance. J Biomed Opt. 2012;17(5). .
[76] Gadermayr M, Appel V, Klinkhammer BM, Boor P, Merhof D. Which way round? A study on the performance of stain-translation for segmenting arbitrarily dyed histological images. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Lecture Notes in Computer Science. vol. 11071. Cham: Springer. 2018. p. 165–173. .
[77] Fujitani M, Mochizuki Y, Iizuka S, Simo-Serra E, Kobayashi H, Iwamoto C, et al. Re-staining pathology images by FCNN. In: 2019 16th International Conference on Machine Vision Applications (MVA). IEEE; 2019. p. 1–6.
[81] Otto F. DAPI Staining of Fixed Cells for High-Resolution Flow Cytometry of Nuclear DNA. In: Methods in Cell Biology. vol. 33. Elsevier; 1990. p. 105–10. .
[84] Cheng SY, Fu SP, Kim YM, Song WY, Li YZ, Xue YJ, et al. Single-cell cytometry via multiplexed fluorescence prediction by label-free reflectance microscopy. Sci Adv. 2021;7(3). .
[85] Yuan E, Matusiak M, Sirinukunwattana K, Varma S, Kidzinski L, West R. Self-Organizing Maps for Cellular In Silico Staining and Cell Substate Classification. Front Immunol. 2021;12. .
[86] Guo SM, Yeh LH, Folkesson J, Ivanov IE, Krishnan AP, Keefe MG, et al. Revealing architectural order with quantitative label-free imaging and deep learning. Elife. 2020;9. .
[88] Burlingame EA, Margolin AA, Gray JW, Chang YH. SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks. Med Imaging 2018 Digit Pathol. 2018;10581. .
[89] Gu S, Lee RM, Benson Z, Ling C, Vitolo MI, Martin SS, et al. Label-free cell tracking enables collective motion phenotyping in epithelial monolayers. iScience. 2022;25(7):104678. .
[90] Ling C, Majurski M, Halter M, Stinson J, Plant A, Chalfoun J. Analyzing u-net robustness for single cell nucleus segmentation from phase contrast images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Computer Vision Foundation; 2020. p. 966–67.
[91] Goswami N, He YCR, Deng YH, Oh C, Sobh N, Valera E, et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light-Sci Appl. 2021;10(1). .
[92] Hu CF, He SH, Lee YJ, He YC, Kong EM, Li H, et al. Live-dead assay on unlabeled cells using phase imaging with computational specificity. Nat Commun. 2022;13(1). .
[93] Kolln LS, Salem O, Valli J, Hansen CG, McConnell G. Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy. J Cell Sci. 2022;135(3). .
[96] Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics. 2012;11(8):255–71.
[97] Anti-MAP2 antibody Data sheet [EPR19691] ab183830. Accessed Oct 2023. https://www.abcam.com/products/primary-antibodies/map2-antibody-epr19691-ab183830.html.
[98] Chen X, Kandel ME, Shenghua H, et al. Artificial confocal microscopy for deep label-free imaging. Nat Photonics. 2022. .
[100] Anti-Ki67 Antibody [Ki-67] data sheet (PE) (A86642). Antibodies.com 2023. Accessed Oct 2023. https://www.antibodies.com/de/ki67-antibody-ki-67-pe-a86642.
[101] Xu ZD, Li X, Zhu XH, Chen LY, He YH, Chen YP. Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN. Front Mol Biosci. 2020;7. .
[105] Gareau DS. Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology. J Biomed Opt. 2009;14(3). .
[106] Bini J, Spain J, Nehal K, Hazelwood V, DiMarzio C, Rajadhyaksha M. Confocal mosaicing microscopy of basal cell carcinomas ex vivo: progress in digital staining to simulate histology-like appearance. Adv Biomed Clin Diagn Syst Ix. 2011;7890. .
[107] Bini J, Spain J, Nehal K, Hazelwood V, DiMarzio C, Rajadhyaksha M. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance. J Biomed Opt. 2011;16(7). .
[109] Giacomelli MG, Husvogt L, Vardeh H, Faulkner-Jones BE, Hornegger J, Connolly JL, et al. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging. PLoS ONE. 2016;11(8). .
[110] Elfer KN, Sholl AB, Wang M, Tulman DB, Mandava H, Lee BR, et al. DRAQ5 and Eosin (‘D &E’) as an Analog to Hematoxylin and Eosin for Rapid Fluorescence Histology of Fresh Tissues. PLoS ONE. 2016;11(10). .
[111] Fan X, Tang ZY, Healy JJ, O’Dwyer K, Hennelly BM. Label-free Rheinberg staining of cells using digital holographic microscopy and spatial light interference microscopy. Adv Opt Imaging Technol Ii. 2019;11186. .
[113] Fan X, Healy JJ, O’Dwyer K, Hennelly BM. Label-free color staining of quantitative phase images. Opt Lasers Eng. 2020;129. .
[115] Bautista PA, Abe T, Yamaguchi M, Yagi Y, Ohyama N. Digital Staining of Pathological Images: Dye amount correction for improved classification performance. Med Imaging 2007 Comput-Aided Diagn Pts 1 2. 2007;6514. .
[117] Hinton G, LeCun Y, Bengio Y. Deep learning. Nature. 2015;521(7553):436–44.
[118] Park Y, Park W, Jo Y, Min H, Cho H. Method and Apparatus for Generating 3D Fluorescent Label Image of Label-Free using 3D Refractive Index Tomography and Deep Learning. European Patent Application. 2021. Patent number: 11450062, Filed: March 19, 2020 Date of Patent: September 20, 2022.
[121] Segerer FJ, Nekolla K, Rognoni L, Kapil A, Schick M, Angell H, et al. Novel Deep Learning Approach to Derive Cytokeratin Expression and Epithelium Segmentation from DAPI. In: Medical Imaging with Deep Learning. CoRR; 2022. .
[123] Shi L, Wong IH, Lo CT, Wong TT. One-side Virtual Histological Staining Model for Complex Human Samples. In: 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Ioannina, Greece; 2022. p. 1–4..
[126] de Bel T, Hermse, M, Kers J, van der Laak J, Litjens G. Stain-Transforming Cycle-Consistent Generative Adversarial Networks for Improved Segmentation of Renal Histopathology. In: Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research. 2019;102:151–163 Available from: https://proceedings.mlr.press/v102/de-bel19a.html.
[128] Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Lecture Notes in Computer Science. vol. 11070. Cham: Springer. 2018. p. 529–36. .
[129] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training gans. Adv Neural Inf Process Syst. 2016;29. https://proceedings.neurips.cc/paper_files/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html.
[130] Durugkar I, Gemp I, Mahadevan S. Generative multi-adversarial networks. arXiv preprint arXiv:1611.01673. 2016.
[131] Frogner C, Zhang C, Mobahi H, Araya M, Poggio TA. Learning with a Wasserstein loss. Adv Neural Inf Process Syst. 2015;28. https://proceedings.neurips.cc/paper/2015/hash/a9eb812238f753132652ae09963a05e9-Abstract.html.
[133] Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Vol. 2. Pacific Grove; 2003. p. 1398-1402. .
[135] Bayramoglu N, Kaakinen M, Eklund L, Heikkila J. Towards Virtual H &E Staining of Hyperspectral Lung Histology Images Using Conditional Generative Adversarial Networks. In: 2017 IEEE International Conference on Computer Vision Workshops (Iccvw 2017). 2017. p. 64–71. .
[137] Trullo R, Bui QA, Tang Q, Olfati-Saber R. Image Translation Based Nuclei Segmentation for Immunohistochemistry Images. In: Mukhopadhyay A, Oksuz I, Engelhardt S, Zhu D, Yuan Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Cham: Springer. .
[138] Bautista PA, Abe T, Yamaguchi M, Yagi Y, Ohyama N. Digital staining of pathological tissue specimens using spectral transmittance. Med Imaging 2005 Image Process Pt 1-3. 2005;5747:1892–1903. .
[140] Bautista PA, Yagi Y. Digital Staining for Histopathology Multispectral Images by the Combined Application of Spectral Enhancement and Spectral Transformation. In: 2011 Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc); 2011. p. 8013–8016. .
[141] Lotfollahi M, Daeinejad D, Berisha S, Mayerich D. Digital Staining of High-Resolution Ftir Spectroscopic Images. In: Appl Spectrosc. 2019;73(5):556–64. .
[142] Bulten W, Bándi P, Hoven J, Loo Rvd, Lotz J, Weiss N, et al. Epithelium segmentation using deep learning in H &E-stained prostate specimens with immunohistochemistry as reference standard. Sci Rep. 2019;9(1):1–10.
[148] Oszutowska-Mazurek D, Parafiniuk M, Mazurek P. Virtual UV Fluorescence Microscopy from Hematoxylin and Eosin Staining of Liver Images Using Deep Learning Convolutional Neural Network. Appl Sci-Basel. 2020;10(21). .
[150] Fredman G, Christensen RL, Ortner VK, Haedersdal M. Visualization of energy-based device-induced thermal tissue alterations using bimodal ex-vivo confocal microscopy with digital staining. A proof-of-concept study. In Skin Res Technol. 2022;28:564–70. .
[151] Meng XY, Li X, Wang X. A Computationally Virtual Histological Staining Method to Ovarian Cancer Tissue by Deep Generative Adversarial Networks. Comput Math Methods Med. 2021;2021. .
[154] Liu K, Li B, Wu W, May C, Chang O, Knezevich S, et al. VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images. In: IEEE Winter Conf Appl Comput Vis. 2023;2023:1918–1927. .
[155] Ruini C, Vladimirova G, Kendziora B, Salzer S, Ergun E, Sattler E, et al. Ex-vivo fluorescence confocal microscopy with digital staining for characterizing basal cell carcinoma on frozen sections: A comparison with histology. J Biophotonics. 2021;14(8). .
[156] Kaza N, Ojaghi A, Costa PC, Robles FE. Deep learning based virtual staining of label-free ultraviolet (UV) microscopy images for hematological analysis. In: Label-free Biomedical Imaging and Sensing (LBIS) 2021. vol. 11655. Proceedings of the SPIE; 2021. p. 116550C. .
[157] Kaza N, Ojaghi A, Robles FE. Automated virtual staining, segmentation and classification of deep ultraviolet (UV) microscopy images for hematological analysis. In: Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Technical Digest Series (Optica Publishing Group, 2022), paper MW4A.5. .
[158] Ortner VK, Sahu A, Cordova M, Kose K, Aleissa S, Alessi-Fox C, et al. Exploring the utility of Deep Red Anthraquinone 5 for digital staining of ex vivo confocal micrographs of optically sectioned skin. J Biophotonics. 2021;14(4). .
[161] Cetin O, Chen M, Ziegler P, Wild P, Koeppl H. Deep learning-based restaining of histopathological images. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE Computer Society; 2022. p. 1467–1474.
[165] Özbey M, Dar SU, Bedel HA, Dalmaz O, Özturk Ş, Güngör A, et al. Unsupervised Medical Image Translation with Adversarial Diffusion Models. arXiv preprint arXiv:2207.08208. 2022.
[166] Guan H, Li D, Park Hc, Li A, Yue Y, Gau YA, et al. Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice. Nat Commun. 2022;13(1):1–9.