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Biomedical sciences heavily rely on numerous biochemical staining protocols to achieve 
specific cell identification or tissue classification. Chemical binding between target mol-
ecules and engineered molecular markers, loaded with artificial contrast agents, can cre-
ate artificial yet specific contrast for optical microscopy (see Fig. 1A & B). Due to their 
molecular specificity, these staining protocols are the established benchmark for most 
biomedical problems related to clinical diagnostics, fundamental research, and biotech-
nology. Beyond their undisputed success, these labeling-intense protocols still require 
extensive processing of the samples, which can cause substantial time delays, affect tis-
sue homeostasis, might limit the choice of available contrast agents and often only allow 
2D imaging of tissue slices or cell cultures instead of 3D tomography. The most com-
mon histological stain of hematoxylin and eosin (H &E), for instance, is based on tissue 
embedding, fixation (Formalin-Fixed Paraffin-Embedded - FFPE), manually slicing into 
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Until recently, conventional biochemical staining had the undisputed status as well-
established benchmark for most biomedical problems related to clinical diagnostics, 
fundamental research and biotechnology. Despite this role as gold-standard, staining 
protocols face several challenges, such as a need for extensive, manual processing 
of samples, substantial time delays, altered tissue homeostasis, limited choice of con-
trast agents, 2D imaging instead of 3D tomography and many more. Label-free optical 
technologies, on the other hand, do not rely on exogenous and artificial markers, 
by exploiting intrinsic optical contrast mechanisms, where the specificity is typi-
cally less obvious to the human observer. Over the past few years, digital staining 
has emerged as a promising concept to use modern deep learning for the translation 
from optical contrast to established biochemical contrast of actual stainings. In this 
review article, we provide an in-depth analysis of the current state-of-the-art in this 
field, suggest methods of good practice, identify pitfalls and challenges and postulate 
promising advances towards potential future implementations and applications.
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thin sections (typically 3-7µm) and staining, before imaging under conventional micro-
scopes or whole slide scanners can be pursued.

Label-free optical technologies (see Fig. 1C), on the other hand, exploit natural con-
trast mechanisms, instead of relying on a limited choice of exogenous markers in the 
above mentioned staining procedures. Simple white-light microscopy, for instance, rely 
on amplitude differences based on scattering and absorption properties of cells and tis-
sues, optical phase microscopy measures phase contrast based on refractive index (RI) 
differences, birefringence, or orientation, while other imaging modalities use intensity 
or lifetime of natural autofluorescence (AF). Although these label-free contrast mecha-
nisms can actually carry highly-relevant information related to factors like density and 
thickness, mass, redox-ratio and many more, their specificity as direct biomarkers is 
typically less obvious to the human observer. Over the past decades, machine learning 

Fig. 1  Basic principle of Digital staining. a Conventional staining of 3D tissue samples requires a 
time-demanding and cumbersome procedure of biopsy acquisition, formalin-fixed paraffin-embedding 
(FFPE), manual sectioning, dehydration and artificial staining. These prepared tissue slices are then imaged by 
optical microscopes and the obtained images are quantified (e.g., via histopathology scoring by experienced 
experts). b Staining of cell cultures is conventionally based on antibody reactions with immuno-fluorescence 
(IF) stains. This process does not require embedding, sectioning and dehydration, and can even compatible 
with live cell imaging. However, the image quantification is still specific to the applied staining (e.g., nuclei 
staining for segmentation of nuclei). c Label-free optical technologies exploit the natural contrast of 
biomedical samples, without relying on artificial stainings. Although this omits the need for extensive sample 
preparation, the quantification is bound to the specific type of optical contrast that was used (e.g., dry mass 
approximation in quantitative phase imaging). d Digital staining (DS) can combine the advantages of an 
experimentally more practical imaging technique, with the high specificity of a thorough but cumbersome 
staining approach. Thus, DS can be used to digitally enhance label-free optical microscopy (e.g., generation 
of IF images based on white light microscopy) or to perform stain-to-stain translation (e.g., generation of 
specific IHC staining based on already available H&E stainings). A detailed literature overview of commonly 
used input-target image pairings and respective examples images is displayed in Fig. 2
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(ML) or artificial intelligence (AI) demonstrated vast success in optical microscopy, 
e.g. in automated detection of diseases  [1], 3D image segmentation  [2] or simultane-
ous optimization of microscopy and software components [3]. In conventional pathol-
ogy, AI models are often used to perform classification or segmentation of histology 
images from diseased and healthy tissues. As common in most supervised ML, training 
of these models requires large datasets with reliable ground truth labels. These labels 
are commonly generated manually by experts, i.e., for the automated segmentation of 
background, cell boundaries, and cell compartments by convolutional neural networks 
(CNN) [4]. Especially with the rise of the U-Net architecture [5] for image segmentation, 
cell segmentation could be solved more effectively. Nevertheless, the conventional pro-
cedures of histological staining and manual annotations are still rather time-consuming, 
and the need for reliable ground-truth data often acts as bottlenecks for throughput in 
digital pathology.

Over the past decade, ML researchers have developed several techniques for image-
to-image translation. Upon training and validation, these generative models allowed 
transfer from one image domain to another, e.g., from maps to satellite images [6], from 
horses to zebras [7] or for style transfer in art [8]. Recently, alternative image-to-image 
training strategies, such as Normalizing Flows [9, 10] and Denoising Diffusion Probabil-
istic Models [11, 12] have also gained significant popularity. Digital staining (DS) is an 
emerging concept in the field of computational microscopy that can digitally augment 
microscopy images by transferring the contrast of input images into a target domain 
(see Fig. 1D). Implementation of digital models is most often based on machine learning 
algorithms, that are trained on pairs of input and target images. In a nutshell, these ML 
models then learn to link characteristic features in structure and contrast from one input 
domain (most often a label-free image) with those of the target domain (most often 
images  from staining with well known molecular specificity). Thereby, digital staining 
very elegantly bypasses two obstacles: (i) during the development and training of com-
putational models, digital staining omits the need of manual annotations of ground 
truth data, by obtaining the ground truth annotations from specific stainings  and (ii) 
upon deployment, the inference with a trained model can then circumvent the time-
consuming and tedious procedure of actual sample preparation, including sectioning 
and staining.

Despite the vast potential of this technique, the growing number of new digital stain-
ing pipelines and a wider range of applications, thorough review articles on this topic 
are rare and only touch side aspects of digital staining. A 2022 review on GANs in oph-
thalmology [13] mentioned some DS techniques in the specific use case of transforming 
fundus photographs to angiography images. Jiang et al. provide a concise review on deep 
learning (DL) in cytology, including classification, segmentation, object detection and 
stain normalization of microscopy images [14], but without covering digital staining as 
such. In a similar fashion, Wu et al., touch on the topic of style transfer in microscopy in 
their 2021 review on computational histopathology [15], however only in the context of 
color normalization. In 2018, Jo et al., mentioned ‘image enhancement via style trans-
fer’ as promising developments for the specific technique of quantitative phase imaging 
(QPI)  [16], but without generally reviewing the entire field of digital staining. Riven-
son et  al., published a 2020 review article on virtual staining for histopathology  [17]. 
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However, it only targeted digital staining of FFPE sections and did not include the 
immense increase in publications in this field over the past three to four years (see 
Fig. 5A). Latest reviews from 2022 and 2023 summarized the concept to translate input 
images into target images in the sole context of histological tissue sections [18, 19], but 
without an in-depth analysis of other digital staining applications, including (live) cell 
staining.

Basic principle and key examples
Successful implementation of digital staining essentially relies on four key parts:

•	 the use of input images that carry a sufficient amount of information to allow 
the translation into the target domain (see chapter on    Input domains). This input 
domain usually relates to the use of a label-free technique, but it is not limited to 
that.

•	 the use of target images with reliable ground-truth information that can be linked 
to the features in the input domain (see chapter  on  Target domain). These target 
images usually use the biochemical specificity of molecular stains as ground-truth, 
but are not restricted to those.

•	 the use of appropriate computational models that can translate input images to tar-
get images (see chapter on Computational models ). Most often, this image-to-image 
regression problem is solved by machine learning algorithms (specifically U-Net or 
GAN architectures), but earlier implementations also relied on linear, mathematical 
formulas to translate color spaces.

•	 a procedure to accurately generate paired input and target images (see chap-
ter on Generation of paired images). The exact registration of input pixels and target 
pixels of the same structures might seem trivial but is essential to enable the model 
to perform accurate image-to-image regression. While a few recent implementations 
use unsupervised learning with unpaired images for training, all implementations at 
least require paired  input and target images for a truthful validation of the predic-
tions, as discussed below.

Thus, digital staining can be viewed as a holistic concurrence of biology, optical micros-
copy and computational modeling. Successful implementations rely on an understand-
ing of the entire workflow that starts from a reasonably posed biological problem, 
involve input images that carry a sufficient amount of information with respect to that 
biological problem, as well as target images that can be linked to the information from 
the input domain and end with a computational model that is able to accurately translate 
input images into target images. Furthermore, the practical workflow to generate pairs 
of input and target images, as well as the choice of quantitative metrics for training and 
validation are important considerations for digital staining.

Depending on the mode of operation and the preference of the authors, the concept of 
DS is also termed ‘virtual staining’, ‘in silico staining’, ‘pseudo-H&E staining’ or ‘virtual 
fluorescence’.

The earliest, and still one of the most common, implementation of DS trans-
lates label-free images of tissue sections into target images of well-known and widely 
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accepted histological stainings. This is often based on two subsequent tissue sections, 
where one is imaged with label-free modalities as input, while the consecutive section 
is used for a conventional histology stain as target. This digital H&E staining has been 
shown extensively and for a multitude of different organ samples based on label-free 
autofluorescence [20].

In 2018, Christiansen et al. demonstrated the next stage for digital staining from live 
cell cultures with different IF dyes in a shared optical path, by using phase microscopy 
and a U-Net model [21]. The use of fluorescently labelled antibodies for digital staining 
in live cells opened the door for many new biomedical experiments, like an extension 
into 3D digital staining [22], the use of digital staining to promote prior-informed cell 
segmentation  [23], digital staining of two different cell cycle markers for mitosis stage 
classification  [24] or a detailed evaluation of virtual labeling of mitochondria in living 
cells [25].

Besides the conceptual advancements of digital staining, the field was undoubtedly 
fueled by the introduction of more powerful ML models for image-to-image regression, 
such as U-Net  [5], generative adversarial networks (GAN)  [26] and cycle conditional 
GANs [7]. Since these models became generally more available and were applied to digi-
tal staining, e.g., the use of the ‘Pix2Pix’ for digital staining in 2018 [27] or the stainGAN, 
which was initially used for stain normalization [28], the number of publications in this 
field increased exponentially over the past 3-4 years (see Fig. 5A).

Input domains: label‑free contrast mechanisms in optical microscopy 
as “optical specificity”
As mentioned above, label-free contrast mechanisms often carry highly-relevant infor-
mation that can be linked to functional and/or morphological features like density, thick-
ness or mass, the redox-ratio of a cell cycle, surface topography, presence or absense 
of certain molecules and many more. Whether this information is sufficient for a given 
digital staining task, is among the first and most important considerations when imple-
menting a digital staining model, as discussed in Trends & methods of good practice 
below.

In this chapter, all reviewed publications are categorized according to contrast 
mechanism of the input domain. Label-free microscopy techniques are commonly 
used to generate input images, while elaborate staining procedures of known bio-
chemical specificity are usually used as target images. The two label-free techniques 
of optical phase contrast and wide-field / white light illumination are the most com-
monly used techniques to generate input images with 19% and 16% of our reviewed 
literature respectively. Other notable label-free input imaging methods include auto-
fluorescence (AF), nonlinear techniques, or photoacoustic imaging. There are several 
studies that employ combinations of different contrasts. On the one hand, this can 
be implemented in one single setup, e.g., in Fourier ptychographic microscopy (FPM) 
as a combination of amplitude and phase contrast [29], in dark field reflectance and 
autofluorescence (DRUM)  [30] or in complementary nonlinear techniques  [31–33]. 
On the other hand, some papers present the use of different imaging systems for com-
bined data input, e.g., wide-field and phase contrast [21, 22, 34]. Furthermore, there 
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are also several implementations of stain-to-stain translation, where inputs from one 
stain are digitally transferred to a different target stain.

While H&E is the most wide-spread stain used for digital staining, the single most 
popular combination is the use of phase contrast microscopy as input images to pre-
dict multiple IF stains, as displayed in Fig.  2. Since most of these IF stains are tar-
geting membrane (Dil stain), nuclei (DAPI or Hoechst) or cytoskeleton (Microtubuli, 

Fig. 2  Pairings of input and target contrast. a Target image contrast is plotted against the input contrast, 
the number of publications in each combination is color-coded. Selected examples in (b) are indicated by 
numbers in (a): (B1) a translation of autofluorescence images from tissue slides to H&E images by Rivenson 
et al. [20], re-use permitted and licensed by Springer Nature. (B2) translation of phase contrast images of 
human neuron cells to specific fluorescence images (DAPI, anti-MAP2 and anti-neurofilament). Data available 
at https://​github.​com/​google/​in-​silico-​label​ing from Ref. [21], re-use was permitted and licensed by Elsevier 
and Copyright Clearance Center. (B3) translation of bright field images of cells to multiple fluorescence stains 
by Ounkomol et al. [22]. Images are publicly available at https://​downl​oads.​allen​cell.​org/​publi​cation-​data/​
label-​free-​predi​ction/​index.​html, re-use was permitted and licensed by Springer Nature. (B4) translation 
of bright field images of living cells to genetically encoded mitochondria markers by Somani et al. [25]. 
Images are publicly available at https://​doi.​org/​10.​18710/​11LLTW [35], re-use licensed under CC0 1.0. 
(B5) stain-to-stain translation of H&E images into cytokeratin stain by Hong et al. [36], Images are publicly 
available at https://​github.​com/​YiyuH​ong/​ck_​virtu​al_​stain​ing_​paper, re-use licensed under CC BY 4.0. (B6) 
stain-to-stain translation of IHC images into different IHC images by Ghahremani et al. [37]. Images are 
publicly available at https://​zenodo.​org/​record/​47517​37#.​YV379​XVKhH4, re-use permitted and licensed by 
Springer Nature. IHC = immuno-histochemcial stain, IF = immuno-fluorescence stain, WF = wide field (white 
light illumination), AF = autofluorescence, PAM = photo-acoustic microscopy, IR = infra-red. An extended 
version of the detailed literature analysis can be found in the Supplementary material of this manuscript

https://github.com/google/in-silico-labeling
https://downloads.allencell.org/publication-data/label-free-prediction/index.html
https://downloads.allencell.org/publication-data/label-free-prediction/index.html
https://doi.org/10.18710/11LLTW
https://github.com/YiyuHong/ck_virtual_staining_paper
https://zenodo.org/record/4751737#.YV379XVKhH4
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MAP-stains), phase imaging techniques are an ideal match, as their optical phase 
contrast is highest for the very same cellular structures (membranes, nuclei and 
cytoskeleton).

The most important label-free optical techniques are briefly presented in this chap-
ter, while biochemical staining methods which are usually used as target images, are 
presented in the following chapter Target domain: biochemical stains as ground-truth.

Wide‑field (WF) microscopy

Perhaps the most basic type of optical microscope is the standard wide-field micro-
scope, known since the beginnings of optical microscopy. Wide-field (WF) micros-
copy is an imaging technique where the whole sample is illuminated with light. The 
basic design consists of a light source that illuminates an extended area typically of 
a thin sample which scatters and transmits a fraction of the illumination into a lens 
or collection of lenses that image the light onto an arrayed detector. Depending on 
the particular illumination conditions, discussed below, wide-field microscopy has 
also been referred to as bright-field microscopy and white-light microscopy, among 
others.

In its most basic form, wide-field microscopy offers qualitative contrast derived from 
the spatially-varying complex transmittance of the sample:

where n(x,  y) is the spatially-varying complex refractive index of the sample, �z(x, y) 
is the sample thickness, and � is the wavelength of the illumination. The real part of 
the refractive index imparts a phase shift on the incident light that is often difficult to 
observe in thin samples using standard bright-field illumination, or illumination whose 
angular range falls within the numerical aperture (NA) of the objective lens. However, 
off-axis illumination in the bright-field regime or in the dark-field regime (i.e., with illu-
mination angles higher than the cutoff imposed by the NA of the objective) can highlight 
certain features that may be used for virtual staining, such as cell or organelle bounda-
ries. The imaginary part of the refractive index corresponds to absorption induced by 
the sample. As such, wide-field microscopy can be useful for imaging certain types of 
cells that contain strongly absorbing molecules at certain wavelengths, such as red blood 
cells and melanocytes. The wavelength dependence of the absorption is often useful 
for distinguishing certain types of molecules, which can be achieved with a wide-field 
microscope by sweeping the illumination wavelength or by using white-light illumina-
tion with a multi- or hyperspectral camera.

For thicker samples, a simple model based on complex transmittance map (Eq. 1) is 
insufficient. Such samples may exhibit higher attenuation contrast due to multiple scat-
tering and absorption, which can be quantified by an attenuation coefficient, µt , that 
subsumes both the absorption coefficient, µa , and scattering coefficient, µs , though 
a standard wide-field microscope generally cannot distinguish the effects of the two 
sources. While such coefficients are gross or bulk metrics of biological samples (i.e., hav-
ing an opaque relationship with the 3D structure of the sample), they can still offer use-
ful sources of contrast for virtual staining [22].

(1)t(x, y) = exp(j2πn(x, y)�z(x, y)/�)
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Phase sensitive methods

Phase contrast (PC) is an important endogenous contrast mechanism of label-free 
samples. Small changes in the refractive index and thickness of cells result in detect-
able changes in the optical phase. Generally, phase contrast microscopy attenuates the 
background light and compensates the phase shift of the scattered light. This way, the 
scattered light interferes with the background light more constructively, which enhances 
the image contrast  [38]. Phase microscopy techniques are quite diverse in their exact 
implementation. They range from the use of phase rings or spatial light modulators, to 
interferometric setups or active illumination control and most often include computa-
tional phase reconstruction.

Phase contrast microscopy and differential interference contrast (DIC) microscopy 
are still two of the most commonly used phase imaging modalities that reveal struc-
tures of semi-transparent cells that are invisible to the previously discussed wide-field 
microscopy. Due to the substantial development of PC and DIC in the last half-century 
and the increasing demand for monitoring in vitro cells, those two modalities are now 
commonly available in commercial microscope solutions. Therefore, a large and diverse 
amount of PC and DIC studies have been conducted on multiple sites for predicting flu-
orescence labels including nuclei and dendrites for human motor neurons cells, as well 
as nuclei and membranes for human breast cancer line cells  [21]. Further, DIC-based 
virtual staining has been proposed in hematology to replace the laborious and incon-
sistent H&E stain of blood smears  [39]. In this case, as DIC only preserves the edges 
of phase images, they tend to lack details for accurate predictions of the inner-cellular 
structures. To relieve this issue, Tomczak et al. [39] proposed to add an auxiliary task of 
nucleus and cytoplasm segmentation in addition to the prime domain transformation 
task (i.e., to predict H&E stain from DIC images), which forces the encoder to be aware 
of the shape of structures. Compared to transformation networks trained with the prime 
domain transformation task alone, such a multi-task learning method can improve per-
formance on digitally staining leukocytes from hematology slides imaged with DIC.

Another imaging technique based on the RI of the sample is optical coherence tomog-
raphy (OCT) [40]. Modern point-scan OCT is typically implemented in the frequency 
domain with a Michelson or Mach-Zehnder interferometer, using wavelength-swept 
light sources or broadband (low-coherence) sources, such as superluminescent diodes 
for illumination. In analogy to ultrasound imaging, OCT uses an optical “pulse-echo” 
time-of-flight method to create tomographic line-scan images along an optical ray, 
which can penetrate up to a few millimeters inside human tissue. Scanning mirrors can 
then be used to move the optical beam to transversely across the sample and create a 
volumetric 3D image of a tissue sample. While the lateral resolution of OCT depends on 
the NA, its axial resolution is inversely proportional to the bandwidth of the source [41]. 
Since its invention in the early 1990s, OCT has become one of the most successful opti-
cal methods in the medical industry [41]. Due to this commercial success, OCT devices 
are now available off-the-shelf. For instance, Lin et al. use a multi-modal OCT system 
(AcuSolutions Inc, Taiwan) that can create registered images from both optical coher-
ence microscopy and fluorescence microscopy [42]. The images from the two modalities 
were merged and false-colored to create pseudo-H&E images. Extensive in-depth com-
parisons between pseudo-H&E images and frozen-section H&E images from various 
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biopsy specimens showed that the proposed digital stain method can provide H&E 
images that describe cellular-level morphology around two times faster than the frozen-
section method [42]. In addition, another study shows that digital staining can also be 
achieved from in vivo OCT measurements [43] where tomographic images of the optic 
nerve heads are acquired from 10 healthy subjects using a standard OCT eye scanner 
(Heidelberg Engineering Inc, Germany). Four different tissue types are identified based 
on pixel-intensity histograms and digitally stained in a way that connective and neural 
tissues of the optics nerve heads can be easily visualized [43].

While the well-established techniques of phase-contrast microscopy and DIC provide 
qualitative phase contrast by converting phase differences into intensity differences, 
quantitative phase imaging (QPI) can provide intrinsic quantification of the optical path 
lengths difference which is a function of refractive index (RI) and sample thickness [44]. 
Thus QPI shows decent specificity in the imaging signal without requiring any sample 
preparations. Due to its ability to map the physical refractive index of the sample, digi-
tal staining based on QPI has been widely explored recently with various computational 
microscopy implementations  [38]. The QPI concept was gradually extended towards 
3D imaging, which resulted in the invention of gradient light interference microscopy 
(GLIM) in 2017 [45]. GLIM uses data post-processing for filtering of out-of-focus com-
ponents for 3D imaging. In 2020, this technique was further augmented by computa-
tional specificity (phase imaging with computational specificity - PICS) to digitally stain 
3D GLIM images using a U-Net implementation [46].

FPM is a computational microscopic technique that enables wide-field and high-res-
olution QPI without any interferometry and mechanical scanning [47]. Usually, a low-
magnification objective lens is used for a wide field-of-view, and an LED array is utilized 
for varying illumination angles. In FPM, multiple measurements are captured by vary-
ing illumination angles, and each measurement represents a different spatial frequency 
of the sample. Phase information is then recovered via phase retrieval algorithms, that 
utilize overlapped spatial frequency as a constraint. FPM was already used for digital 
staining of antibody conjugates stained mouse kidney slides from monochromatic phase 
images reconstructed with Fourier Ptychography  [29]. An FPM-like setup using the 
same active illumination of a LED array was also used to digitally stain cell membrane, 
and nuclei in two different cell cultures [48], although actual FP reconstruction was not 
applied in that case.

Autofluorescence (AF)

There are several naturally occurring proteins, that emit fluorescence upon excitation 
by UV or blue light. This process of autofluorescence is often exploited for label-free 
fluorescence imaging. The most common autofluorescent molecules are listed in Table 1. 
The excited molecule can then emit standard fluorescence after internal energy conver-
sion (Stokes shift). Intensities, life times  as well as ratios of different autofluorescence 
molecules can be specific to certain cell types and/or functional states [49]. Thus, AF is 
a reasonable candidate to be used for digital staining. Similar to WSI with white light 
illumination, some articles use whole slide scanners with UV light to excite these natural 
fluorophores to WSI based on AF contrast [50].
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Nonlinear techniques

Optical, nonlinear label-free contrast mechanisms described here include multipho-
ton microscopy (based on nonlinear AF and second harmonic generation - SHG) and 
Coherent Anti-Stokes Raman Scattering (CARS).

Although the non-linear excitation process in Multiphoton Microscopy is slightly dif-
ferent to the single-photon AF, described above, most molecules displayed in Table  1 
can also be excited with a corresponding two- or three-photon excitation. Compared 
to conventional fluorescence, which uses blue or UV light of around 400 nm, MPM uses 
longer wavelengths typically in the range of 780-850 nm (two photon process) or 1,100-
1,300  nm (three photon process). This avoids the strong scattering and absorption of 
biological tissues in the UV range and is not yet affected by the immense attenuation 
from absorption in water towards the far infra-red region. Therefore, MPM enables 
deeper tissue imaging than single-photon microscopy. Additionally, the signal genera-
tion is naturally limited to the confined focal volume, which outwears the need for a 
pinhole in the detection path. Most commonly, the native fluorophores of NADH and 
flavins, are used for label-free MPM [51]. Similar to single-photon autofluorescence, this 
signal was shown to be specific for certain cell types and/or functional states  [52, 53], 
making it a useful input contrast for digital staining.

Furthermore, MPM naturally enables higher harmonic generation (second harmonic 
generation - SHG or third harmonic generation - THG) as additional contrast mecha-
nism for imaging. SHG or THG are based on the electrical field component of the inci-
dent light and the polarization properties of the sample. This electrical field induces a 
directional polarization within the sample, which in turn induces the emission of a sec-
ondary wave at higher frequency. In contrast to fluorescence, SHG or THG does not 
experience a Stokes shift. This signal is very specific to structures within the sample that 
have respective non-linear susceptibility properties (i.e., χ(2) > 0 for SHG or χ(3) > 0 
for THG). SHG for instance, is specific for structures that lack inversion symmetry 
( χ(2) > 0 ), such as biological molecules of collagen, myosin and tubulin [54].

A multi-modal microscopy system, including coherent anti-stokes Raman scatter-
ing (CARS) at 2,850 cm−1 , SHG in forward direction and two-photon AF in backward 
direction  [55], was used to demonstrate a computational transformation from images 

Table 1  Most common fluorophores for natural autofluorescence, according to [49]

Fluorophore Excitation wavelength (nm) Emission 
wavelength 
(nm)

Phe, Tyr, Trp 240 - 280 280 - 350

Cytokeratins 280 - 325 495 - 525

Collagen 330 - 340 400 - 410

Elastin 350 - 420 420 - 510

NAD(P)H 330 - 380 440 - 462

Flavins 350 - 370, 440 - 450 480, 540

Fatty acids 330 - 350 470 - 480

Vitamin A 370 - 380 490 - 510

Porphyrins 405 630 - 700

Lipofuscins 400 - 500 480 - 700
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label-free multi-modal contrast to image with an artificial H&E contrast [33]. This trans-
lation was later updated by using GAN models [32].

Photoacoustic microscopy (PAM)

Photoacoustic imaging is based on the photoacoustic effect  [56] and detects sound 
propagation upon laser excitation of the most prominent absorbers in tissue [57]. Thus, 
PAM promises high molecular specificity to molecules that have a high absorption coef-
ficient, such as hemoglobin, water, melanin and collagen [57]. As ultrasonic scattering 
is typically weaker in tissue compared to optical scattering, photoacoustic microscopy 
can produce absorption images at deeper depths compared with traditional microscopy 
techniques, which makes it suitable for a variety of in vivo studies [58]. Digital staining of 
PAM images was demonstrated for FFPE brain secitons [59, 60] or skin sections [61, 62].

Target domain: biochemical stains as ground‑truth
While the previous chapter on Input domains discusses label-free optical imaging tech-
niques, that are mostly used as input images for digital staining, this chapter presents 
a similar analysis for artificial staining methods that are usually used as target images 
for digital staining. Here, we have grouped the typical staining methods into: the histo-
logical H&E staining, immuno-histochemical staining (IHC) and immuno-fluorescence 
staining (IF).

Histological staining

In standard histopathology, tissue samples are most often analyzed with respect to their 
morphological appearance. Due to low contrast of thin tissue sections under conven-
tional light microscopes, histopathology relies on artificial staining to evaluate tissue 
morphology. The combination of hematoxylin and eosin staining (H&E) is the most 
widely used in histopathology and serves as gold standard for most medical diagnosis 
of tissues. Generally, tissue biopsies are first extracted, using techniques, such as strip 
biopsy [63], endoscopic pincer grasping instruments [64] or ligating devices [65]. These 
samples are then fixed, embedded and sectioned. Typical fixation media are based on 
formaldehyde, while some techniques use Zinc or Alcohol/acetone, sometimes with the 
addition of picric acid, mercuric chloride or sodium acetate  [66]. There are two main 
approaches for tissue embedding: embedding in paraffin [67] or snap freezing in optimal 
cooling temperature gel  [68]. Each of these procedures comes with certain procedural 
requirements and different time durations. The most common technique for fixation and 
embedding is the use of formaldehyde for fixation and paraffin for embedding, leading to 
the gold standard for tissue preparation of Formalin-Fixed Paraffin-Embedding (FFPE).

Depending on the type of embedding, the samples are then sectioned by cryotomes 
or microtomes to thin slices, typically between 3 and 10 µm. Finally, these sections are 
mounted on glass slides and stained. In the case of H&E staining, following Cardiff 
et al.  [69], paraffin tissue sections are first cleared of paraffin in baths of xylene (three 
changes for 2 min per change), then hydrated by ethanol baths (three changes of 100% 
ethanol for 2 min per change, transfer to 95% ethanol for 2 min, transfer to 70% ethanol 
for 2 min) and rinsed in running tap water (2 min) [69].
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Afterwards, the tissue sections are stained in hematoxylin solution (3 min), washed 
again in running tap water (5 min) and then stained with eosin (2 min) [69]. The samples 
are dehydrated (dipping in 95% ethanol, transfer to 95% ethanol for 2 min, two transfers 
to 100% ethanol for 2 min per change) and cleared in three changes of xylene (2 min per 
change) [69]. Thereby, hematoxylin stains cell nuclei and eosin stains extracellular matrix 
and cytoplasm. Finally, the stained tissue sections are sealed and preserved between 
glass slice and a coverslip [69]. Thus, the staining protocol alone already accounts for at 
least 90 min, and the entire procedure from biopsy acquisition to microscopic images of 
the stained tissue sections can easily last multiple days or even weeks, when consider-
ing queuing times in the common laboratory work-flow. In the current state-of-the-art 
of digital staining, H&E staining is the most common target stain for digital staining, as 
displayed in Fig. 2.

Immuno‑histochemical staining (IHC)

Compared to the purely morphological approach of H&E staining in histopathology, the 
concept of immuno-histochemical staining (IHC) allows more specific antigen detec-
tion. Thereby, IHC goes beyond morphological analysis and fills the gap between clas-
sic histopathology (see section on Histological staining) and the molecular specificity of 
immuno-fluorescence staining (see section on Immuno-fluorescence staining (IF)) [66]. 
Similar to histopathology, IHC stains are usually applied to fixed tissue sections. In con-
trast to H&E however, IHC stains are based on specific antibodies [66]. IHC can either 
use direct staining, where a primary antibody directly leads to colored histochemical 
reaction, or indirect staining, where the primary antibody is combined with a second-
ary antibody. In the latter case, the primary antibody binds to the target epitope and 
the secondary antibody is loaded with a chromogen and binds to that primary antibody. 
Common examples for example IHC include cell stainings, such as anti-CD3 or anti-
CD20 or picro Sirius red staining for collagen [70]. Similar to the above mentioned his-
tology stainings, IHC stains are most commonly used on FFPE tissue sections. IHC were 
regularly used for digital staining, for instance by using human cancer marker (Ki-67 
antigen) [31], Jones’ stain [20, 71–73], Masson’s trichrome [20, 34, 71–77], picro sirius 
red  [78, 79], orcein  [78],Verhoeff van Gieson (EVG) stains  [79] or periodic acid-Schiff 
(PAS) stain [34, 76, 80].

Immuno‑fluorescence staining (IF)

The third category is the use of fluorescence markers for staining. This can either be 
achieved by a fluorescent primary antibody (for instance the DAPI stain)  [81] or by 
using the established combination of primary antibodies against specific epitopes and 
a fluorescent secondary antibody. In the latter case, the primary antibodies are some-
times similar to those used in IHC. Although the boundary between IHC and IF staining 
can sometimes be blurry, we deliberately make this distinction, since IF can also be used 
with unfixed samples, like in vivo cell cultures. Due to the toxicity of the fixation process 
and the physical sectioning of the samples, this is challenging or even infeasible using 
histology or IHC stainings. Therefore, IF enables a series of new applications for digital 
staining.
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In combination with a shared optical system to generate paired input and target 
images (see chapter on Generation of paired images), IF is the best viable option to 
perform digital staining for living cells in culture. The most common examples for IF 
techniques in digital staining include stains for cell membranes  [21, 22, 46, 48, 82], 
DAPI or Hoechst stains for nuclei  [21, 22, 46, 48, 50, 82–90], Rhodamine B isothio-
cyanat for viruses  [91], axons markers (tau stain  [83], anti-neurofilament stain  [21], 
antiMAP2 for dendrites  [21, 50, 83], live and dead cell markers (NucBlue as “live” 
reagent and NucGreen as “dead” reagent or PI as dead cell marker) [21, 50, 84, 87, 92], 
actin markers [22, 84, 86, 88, 93], Mitochondria (MitoTracker Red) [94], antiTuj1 for 
neurons [21], endosome [84], goldi apparatus [84], proliferation [84], Myelin marker 
in brain [86], markers for the G1 and S stage of the cell cycle [24].

In addition to these exogenous molecular markers, fluorescence stains can also be 
encoded by genetic modification of the target organism to achieve expression of fluo-
rescence markers in target components, e.g., in mitochondria  [25]. Furthermore, IF 
stains are also being used in multiplexed fashion (see Fig. 4E) for multiplexed immu-
nofluorescence (mpIF) [37, 95].

Biochemical specificity of target stains

In digital staining, it is often overlooked that the biochemical binding specificity rep-
resents the fundamental uncertainty that defines the upper limit of trustworthiness 
of any digital staining model. Although most stains mentioned above are commonly 
used as ‘gold-standard’, they are actually not always standardized with respect to their 
biochemcial binding specificity. In the case of H&E or IHC stains, the appearance of 
stained samples severely dependents on the type of stain solution, the exact staining 
protocol and the quality or age of dyes. This is especially the case for histology and 
IHC stainings, but also applies to many IF stains, like the common fluorescent DNA-
stain DAPI. In these cases, a standardized specificity value (commonly stated in %) is 
not available.

For IF stains on the other hand, antibody manufacturers occasionally state reference 
measurements for specificity. However, it is still challenging to standardize the actual 
biochemical specificity values across different studies, as it is severely affected by the 
precise biochemical conditions of the experiment and the environment, including pH 
value, different behavior in medium vs in cells, ligand buffer interaction, temperature 
or competing binding partners, to name a few. As displayed in Table  2, the stated 
specificity values can range between 66% and almost 100 % for different target mol-
ecules. Moreover, this binding specificity can  even vary for the same molecule, for 
instance if different antibodies target different binding sites (see the example of anti-
tau antibodies in Table 2).

For most histological applications, this is completely acceptable, as long as the stain 
quality enables pathologists to count cells, determine diseased tissue and make a diagno-
sis. In the case of IF stains, careful calibration measurements can still enable quantitative 
analysis under standardized conditions. However, it is essential to consider the limited 
specificity of any target image instead of treating it as actual ground-truth and to regard 
digital staining as a model prediction that is fundamentally based on these limitations.
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Computational models to transfer input images to target domain
As already mentioned, the development of image-to-image regression models, like 
U-Net [5], GANs [26] or cycle conditional GANs [7] fueled the field of digital staining 
over the past years. Together, these models make up more than 60% of all reviewed 
articles here. A short overview of the basic principle of these models is displayed in 
Fig. 3 and elaborated upon below.

Table 2  Examples of primary antibodies for immuno-fluorescence staining with reported binding 
specificity and features examples for digital staining (DS). MAP2 = Microtubule Associated Protein 2, 
HEK = human embryonic kidney, isoform specificity = “no detectable non-specific binding”

Antibody Target molecule Reported binding specificity Featured DS references

Anti-β-actin cytoskeleton (actin proteins) isoform specificity in knockout 
cells [96]

[22, 83, 84, 86, 93]

Anti-MAP2 dendrites (microtubule assembly 
during neurogenesis)

90% in Mouse brain cells [97] [21, 50, 82, 83, 87, 98]

Anti-Tau axons (neuronal microtubule-
associated protein)

80% for pT181 binding site isoform 
specificity for most other sites in 
HEK cells [99]

[83, 98]

Anti-Ki-67 cell cycle marker, proliferation 
marker, marker for neoplastic 
tissues

66% in human blood cells [100]  [37, 84, 101–103]

Fig. 3  Computational models for Digital staining. a The general supervised machine learning workflow for 
most digital staining. Please refer to the main text for some examples that use an unsupervised workflow 
b The most commonly used models: besides earlier implementations of color-coding with a linear 
contrast translation equation f(k) or feature engineering and classical ML, almost all modern digital staining 
implementations use deep learning with either CNN and GAN architectures (I = Input image, T = Target 
image, G = Generator, Ig = generated image, D = Discriminator)
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Pre‑processing

Before image data can be used to train a digital staining model, several pre-processing 
steps are often required. Unless a common optical path is used (see chapter on Gen-
eration of paired images), digital staining usually requires image registration to 
ensure optimal pixel overlay between input and target images. As discussed in  the 
chapter  on  Caution & pitfalls, this can lead to several challenges, as for instance 
with sectioning artifacts when using consecutive sections to generate paired images. 
A detailed explanation of an image registration workflow for digital staining can be 
found in the work of Bai et al  [104], who used a combination of finding speeded up 
robust features (SURF) points, correlation-based elastic registration algorithms, 
trained registration models and pyramid elastic image registration algorithms. The 
generation of image patches is an additional pre-processing step that is very common. 
Especially, when images are acquired from large-FOV whole-slide imaging (WSI) sys-
tems (see section on Wide-field (WF) microscopy), slide images are usually cropped 
into 2,000-20,000 image patches of 256x256 pix2 or 512x512 pix2 each before training 
a digital staining model.

Linear color‑coding methods for stain transformation

Training of data-driven machine learning models is the current method of choice as 
computational model to transfer style and color from input into target images. How-
ever, especially earlier studies also used simpler mathematical equations for color 
transfer that worked reasonably well, but were often not verified quantitatively on a 
separate validation data set  [42, 74, 105–113]. Most of them follow a simple color-
coding method, i.e., a linear mathematical model based on Gareau et al. [105], which 
was also applied to the previously mentioned OCT images  [42]. Although most of 
these linear color coding methods were applied for earlier implementations of DS, 
they were still used as recently as 2022 [30].

Feature engineering and classical machine learning

In the next phase of digital staining models, researchers quantified engineered image 
features and exploited them in classical machine learning models. For instance, k 
nearest neighbor   [114], spectral Angle Map (SAM), Nearest neighbor (NN), near-
est mean classifier (NearMean) [115], random forest [31, 116] or partial least squares 
regression (PLS)  [33] were used for digital staining problems. Although these 
approaches require more human-supervised feature extraction and prior knowledge, 
it can perform very robustly and often generalizes well across different data sets from 
the same sample under different imaging systems. On the other hand, it is often chal-
lenging to transfer it to other samples and can be more labor-intense than deep learn-
ing methods.

Deep learning

Deep neural networks (DNNs) refer to neural networks with multiple layers, allow-
ing for the extraction of increasingly abstract features from input data. While early 
models in the 1940s and 1950s were limited in their ability to learn from data and to 
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scale to larger and more complex problems, the development of backpropagation in 
the 1980s sparked renewed interest in DL. However, computational limitations pre-
vented training of neural networks with many layers, and progress in DL was slow. 
The emergence of faster and more powerful processors, along with the availability of 
large amounts of labeled data, led to a resurgence of interest in DL in the early 2000s.

Convolutional neural networks (CNNs)

Researchers began to develop more sophisticated NN architectures, such as convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs), that could learn 
from complex and high-dimensional data, such as images, leading to image recognition 
using a so-called deep convolutional neural network (DCNN) [117]. The employed con-
volutional layers are particularly well-suited for image data, as they use a set of learnable 
filters to convolve over the image, detecting various features such as edges, corners, or 
textures. Since then, DL has become one of the most active areas of research in artificial 
intelligence (AI).

DL has been used for many machine learning tasks of images, including classification, 
regression, and segmentation. The most popular DL architecture for image segmenta-
tion is the U-Net which is a fully convolutional neural network that was introduced in 
2015 by Ronneberger et al [5]. The U-Net consists of an encoder network and a decoder 
network. The encoder network consists of several convolutional and pooling layers that 
decrease the spatial dimension of the input images while simultaneously increasing the 
number of feature maps. The decoder network is made up of convolutional and upsam-
pling layers that restore the spatial dimensions of the resulting segmentation map and 
simultaneously decrease the number of feature maps. The U-Net utilizes skip connec-
tions to combine low-level features from the contracting path with high-level features 
from expanding path for preserving spatial resolution in the output.

CNNs are one of the two most often used types of predicitve models, besides genera-
tive models of the GAN family (see below). In particular, the UNet is the most popular 
CNN architecture used for digital staining [21, 77, 79, 83, 85, 86, 89–92, 98, 118, 119].

Generative models

Generative adversarial networks (GANs) have revolutionized the field of DL by enabling 
the generation of realistic data samples. The first GAN was proposed by Ian Goodfel-
low in 2014 [26], and consisted of one generator and one discriminator. The generator 
produces fake data samples, while the discriminator tries to distinguish between real and 
fake data samples. The training process involves the two networks playing a min-max 
game, with the generator trying to fool the discriminator into classifying its fake samples 
as real, while the discriminator tries to correctly classify the samples. While GANs work 
most of the time, there is no guarantee that the generator will produce images that actu-
ally look like the input dataset. To address this issue, researchers have proposed vari-
ous modifications to the GAN architecture, such as the conditional GAN, which adds 
class labels to the generator [26], and the CycleGAN, which consists of two generators 
and one discriminator  [6]. Within this GAN family, the conditional GAN architecture 
of ‘Pix2Pix’ is the most commonly used for digital staining [25, 61, 62, 79, 82, 120–124].
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The CycleGAN has gained popularity in recent years due to its ability to translate 
between different modalities without the need for paired datasets with labels. Instead, 
the CycleGAN uses a cycle consistency loss to ensure that the generated output is con-
sistent with the input data [6]. This has enabled researchers to apply the CycleGAN to 
a wide range of tasks, such as predicting H&E stain from photoacoustic microscopy 
images  [125] and improving periodic-acid-Schiff-stained renal tissue for whole slide 
image segmentation [126]. In addition, translations between different stains have been 
proposed, like, transferring between Papanicolaou and Giemsa stains  [127]. Moreover, 
CycleGAN approaches have also been used to improve periodic-acid-Schiff-stained 
renal tissue for whole slide image segmentation [126], as well as to predict color bright-
field images and antibody conjugates stained mouse kidney slides from monochromatic 
phase images reconstructed with Fourier ptychography  [29]. In general, CycleGAN 
approaches have proven to be versatile and flexible, allowing for the translation between 
various modalities, making it easier to acquire the data required for medical diagnostics 
and research. One recent development in the field is the introduction of saliency maps, 
which have been used to improve the performance of unsupervised models for image 
transformation tasks. For example, an unsupervised model named Unsupervised con-
tent-preserving Transformation for Optical Microscopy (UTOM) uses a saliency con-
straint to learn the mapping between different histology stains [50].

One of the major challenges with GANs is the problem of “hallucination” [128]. Hal-
lucination occurs when the generator produces synthetic data that do not correspond to 
the input data distribution. In other words, the discriminator is still fooled by synthetic 
data that either shows realistic looking artifacts (e.g., a digitally stained cell, when there 
is no actual cell in that region) or by synthetic data that deletes features (e.g., cells) that 
are actually present in the real data. This problem can arise when the training data are 
limited or when the input data are highly variable. Hallucination can be problematic, 
particularly in the medical domain. It is difficult to detect when a GAN is hallucinat-
ing, as the synthetic data may look plausible to the human eye. To mitigate the prob-
lem, researchers have proposed various techniques, such as incorporating regularization 
terms in the GAN loss function [129], using pre-training of the generator [26], or using 
multiple discriminators  [130]. However, the problem of hallucination remains a chal-
lenging issue in GAN training, particularly when working with limited or highly variable 
data, as discussed below.

Loss functions

For deep learning-based digital staining, loss function selection is one of the most 
important aspects of the neural network designing. Similar to other DL applications, 
the most commonly used loss functions are mean absolute error (MAE) or L1 loss, the 
mean squared error (MSE), which takes the L2-norm penalty, and cross-entropy. The 
innovations in the fields of convolutional networks, the U-Net and generative models, 
were accompanied by a series of new quantitative metrics for image similarity, such as 
Wasserstein loss  [131], structural similarity index (SSIM)  [132] or multi-scale SSIM 
(MS-SSIM)  [133]. In addition to MSE and MAE, these metrics are used frequently 
for training and/or performance evaluation in digital staining. However, employing a 
single loss function may lead to performance degradation. MAE keeps brightness and 
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color unchanged, but assumes that the influence of noise and the local characteristics 
of the image are independent [82], MSE tends to generate blurry results [134]. SSIM 
became popular since it tends to produce results that are closer to the human visual 
system in terms of brightness, contrast, structure, and resolution  [93]. Additionally, 
SSIM can detect high-level structural errors  [50]. However, we note that the MS-
SSIM loss can lead to brightness changes and color deviations [82]. Therefore, there is 
a range of customized metrics designed for specific tasks, as well as the combination 
of multiple basic loss functions  [50, 94, 135, 136]. In Table 3, we summarize formal 
definitions and featured references for the most common loss functions.

The invention of GANs and their wide use for digital staining, as discussed above, 
require more complex adversarial loss metrics that are composed of generator loss 
and discriminators loss. CycleGAN models [7] typically contain two terms: the adver-
sarial loss, to quantify the style match between target and generated images, and a 
cycle consistency loss Lcyc(G, F) , which prevents the learned mappings G and F from 
contradicting each other. Additional losses are also often incorporated into these 
basic terms, i.e., for regularization purposes.

Generation of paired images
Digital staining relies on paired images. Although some GAN-based techniques use 
unpaired data sets for unsupervised training, the majority of articles reviewed here 
still relies on paired images for supervised learning. Moreover, due to the “hallucina-
tion-gap” mentioned above, we postulate that paired images are a necessity at least for 
a trustworthy validation and performance evaluation of a given digital staining model.

The generation of these paired input and target images is as an important consider-
ation in the practical implementation of digital staining. With the exception of earlier 
studies that used mathematical equations for color / style transfer [42, 74, 105–113] 
and most recent techniques that use semi-supervised or un-supervised ML mod-
els  [23, 29, 32, 50, 125, 137], most approaches use paired images of input and tar-
get space for training. At the very least, a truthful validation of the output of trained 
digital staining models still requires paired images, even for conventional linear color 
translation or for modern unsupervised learning. Therefore, the process of sample 
preparation, staining protocol and sequence of imaging is also important for digital 
staining. Here, we have identified five main procedures, as displayed in Fig. 4:

Table 3  Selected loss functions used for digital staining (DS) with featured references, not including 
adversarial losses. O(x,  y) represents the output image, ˆO(x , y) represents the target image, µ 
represents the average value, σ represents the standard deviation, c1 and c2 are stabilization constants 
used to prevent division by weak denominator, respectively

Metric Formal definition DS References

Mean Absolute Error (MAE) LMAE =

X ,Y
x=1,y=1 |O(x , y)−

ˆO(x , y)| [34, 71, 82, 86]

Mean Squared Error (MSE) LMSE =

∑X ,Y
x=1,y=1(O(x , y)−

ˆO(x , y))2 [20, 22, 46]

Cross-entropy LCE =

∑X ,Y
x=1,y=1

ˆO(x , y)log(O(x , y)) [21, 39, 87, 91]

Structural Similarity Index Measure (SSIM) LSSIM =

(2µoµô+c1)(2σoσô+c2)

(µ2
o+µ2

ô
+c1)(σ 2

o+σ 2
ô
+c2)

[29, 59]



Page 19 of 32Kreiss et al. PhotoniX            (2023) 4:34 	

•	 cutting consecutive tissue sections from a block of FFPE tissue, and imaging each at 
a different device (e.g., one for label-free input and one for actual staining as target 
image).

•	 the sample is first stained and then imaged consecutively by two different techniques 
(e.g., one for input and one for target imaging)

•	 the unstained sample is first imaged for the (label-free) input domain and is then 
stained for the target image domain

•	 the choice of input contrast and target contrast allows for spectral separation 
between input and target images in the same shared optical path.

•	 multiplex-staining or de- and re-staining. Here, the same sample is imaged multiple 
times with multiple different staining techniques. A previous set of stains is chemi-
cally removed or bleached, before the next set is applied.

The unique advantages and disadvantages of these techniques are summarized in the 
table in Fig. 4. Please note that these limitations are only relevant for the generation of 
image pairs, and, therefore for the development/training and the verification of single 
digital staining models. While early studies relied mostly on working with consecutive 
sections (Fig. 4A), imaging of the same tissue section is actually the preferred method 

Fig. 4  Generation of image pairs for the training of digital staining models. A-E Schematic workflow of the 
five different procedures. The table shows positive features (green), neutral features (orange) and negative 
features (red)
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of choice to remove sectioning artifacts between input and target. Ideally, staining of 
the target contrast is performed after input imaging, although a few niche applica-
tions used a workflow where the sample was first stained (Fig. 4B). Whenever different 
imaging platforms are used sequentially (Fig. 4A-C), image registration is still essential 
(see section on Pre-processing). In contrast to that, techniques with shared optical path 
can almost omit the need for image registration, while also enabling digital staining of 
cell cultures without the presence of tissue sectioning artifacts for continuous digital 
staining of processes, like cell growths and cell-to-cell interaction (Fig. 4D). Multiplex-
ing of the staining protocol by using de-staining and re-staining protocols (Fig. 4E), can 
maximize the amount of staining from a given sample (tissue section or cell culture). The 
main advantages and disadvantages of each technique are summarized in Fig. 4.

Applications
In this section, we categorized digital staining publications according to the type of 
sample and according to the field of application. As already mentioned in  the section 
on Basic principle and key examples, there are currently two main modes of opera-
tion. On the one hand, the use of fixed tissue sections is most common, either relying 
on FFPE sections [20, 23, 27, 30–34, 36, 37, 42, 50, 59–62, 71–73, 75–80, 85, 86, 88, 95, 
98, 101–106, 108–110, 112, 114–116, 119, 121, 123, 134, 137–154] or on frozen tis-
sue sections  [32, 107, 125, 135, 155]. The second main field is digital staining for cell 

Fig. 5  Historical trends in the field of digital staining. a The total number of publications in the field. b All 
reviewed articles as parallel and linked categories. The year of each publication is color-coded. An interactive 
version of this plot is available as Supplementary HTML file
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cultures [21, 22, 24, 25, 39, 46, 48, 82–84, 87, 89, 90, 92–94, 111, 113, 118, 127, 136, 156, 
157], either from fixed or in vitro cell samples  [22, 24, 89, 90]. Additional, but minor 
fields of application include the use of fresh, un-preserved tissue samples [120, 158] or 
even some in vivo studies, e.g., on the skin [122], in opthomological imaging of the ret-
ina [159] or during endoscopic imaging [160].

The immediate goal of digital histopathology staining of tissue sections (sometimes 
termed ‘pseudo-H&E’ staining) is to facilitate a wider use of label-free optical technolo-
gies by physicians and biomedical researchers, as it allows analysis of label-free images 
by a pathologist in the well-known and accepted histology image domain [17, 33]. Fur-
thermore, it could allow the use of routine image analysis protocols that have been devel-
oped for conventional stainings, e.g., for surgical margin analysis [60] or white blood cell 
identification in blood smears [124]. Digital staining of tissue sections is often used for 
pathological evaluation of disease scores [104].

Compared to virtual histology staining of tissue sections and blood smears, digital 
staining of cells cultures offers entire new research applications that could otherwise not 
be investigated. IHC staining are unfeasible, especially if cells need to be kept alive. Even 
fluorescence antibodies stains can interfere with biological processes, if their molecu-
lar size is large. A common applications for digital staining of cell cultures is the dis-
tinction between live and dead cells using label-free imaging and digital staining [21, 50, 
84, 87, 92]. Digital staining is also frequently applied to neurons [21, 50, 83, 86], where 
functional information from living cells is especially interesting and where actual stain-
ing can be particular challenging. The combination of label-free imaging and digital 
staining allowed the simultaneous use of an AI-based nucleus finding algorithm and an 
additional tracking algorithm, which was not possible to the traditional method, as fluo-
rescent tracking can affect cell behavior [89]. This concept of combining digital staining 
with object detection, i.e., for nucleii detection is also used in other applications [154]. 
As already mentioned, digital staining of phase microscopy images enabled investiga-
tion of cell growth and cell division, where the translation model was trained on samples 
concurrently stained for the G1 and the S stage of the cell cycle [24]. The overlap of both 
signals could then indicates the G2 or M stage [24]. The concept was even extended to 
infer not only the staining procedure, but also 3D optical sectioning capability of confo-
cal fluorescence microscopy based on non-confocal 3D quantitative phase images [98]. 
The approach was generalized for different fluorescence channels, different cell types 
and different magnifications [98].

Trends & methods of good practice
Pillar and Ozcan identified several key advantages of virtual staining over actual stain-
ing [18], like a reduced time to perform staining, minimal manual labor, minimal stain 
variability, less hazardous waste composition of tissue fixatives, preservatives and stain-
ing dyes, no tissue disruption of the actual sample, no restrains to use multiple stains on 
a single slide, the chance to perform stain-to-stain transformation and a reduced chance 
for technical failures [18]. Most of these advantages also generally apply to digital stain-
ing, as it is discussed here. An important addition to the field is the use of digital stain-
ing for cell cultures (both fixed and alive cells), as discussed above. In this case, digital 
staining offers additional advantages, such as an identification of functional stages (e.g., 
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growth phase) without the biochemical binding of actual antibody stains, that could 
otherwise interfere with biological homeostasis and impact motion, growths or other 
aspects of relevance.

As digital staining was refined over the years, we can identify certain trends in this 
field (see Fig. 5 and supplementary material Figs. S1 and S2). While the first techniques 
mostly used linear color translation for pseudo-H &E staining, computational tools 
became more powerful and the applications became more diverse over time. Nowadays, 
DL models, like the U-Net (since 2015), or GAN models (since 2016), are the most com-
mon models used for digital staining. At the same time, the range of applications has 
significantly expanded, coming from histological tissue sections to cell cultures (since 
2018), multiplexed cell imaging (since 2018), or even advanced examples mentioned 
above, like live cell growth imaging [24] or inference of 3D confocal fluorescence from 
non-confocal phase images  [161]. Similarly, the applied input imaging technologies 
diversified over time. Label-free modalities, like phase contrast (20/105 articles), wide-
field (17/105 articles) and single-photon autofluorescence (12/105 articles) microscopy 
are still the most frequently used, making good use of digital staining to add compu-
tational specificity to these label-free technologies. However, digital staining is also 
used for stain-to-stain translations, e.g., with artificial stains (H&E with 10/105 or IF 
with12/105 articles) as input instead of targets.

Based on these ongoing trends and the current state-of-the-art, we suggest the follow-
ing methods of good scientific practice, when developing digital staining. Since each of 
these topics is an entire field of research in itself, we will only shortly address their rel-
evance to the field of digital staining.

•	 General feasibility: As with most ML problems, one should consider first, whether 
the information content in the data, i.e., the input domain, is believed to be sufficient 
for the given task. More specifically, a good first question is if the general informa-
tion in the input images is correlated with the one in the target domain. For instance, 
it might seem unfeasible to digitally stain cell nuclei (target) from images that only 
contain fluorescence of a membrane marker as input, if no additional information 
was used. On the other hand, it would seem quite feasible to perform DS of nuclei 
and membrane markers based on phase contrast images, as the contrast in optical 
phase is high for both nuclei and membranes. If a paired data set is already available, 
we suggest to test the general feasibility first by developing a model for simpler tasks, 
such as patch classification, object detection, or semantic segmentation.

•	 Report uncertainties: One of the main short-comings of the current state-of-the-art 
for digital staining is that fundamental uncertainties in input and in target data are 
usually not reported. As presented in this review, however, DS is a holistic approach 
that involves the entire pipeline of biology, imaging and ML. Simply reporting a per-
formance metric of the ML task, is therefore insufficient, as those metrics assume 
a perfect ground-truth. However, target data from actual biochemical staining are 
always affected by the specificity of the molecular marker as fundamental uncer-
tainty in the ‘ground truth’ (see section on Biochemical specificity of target stains). 
Similarly, imaging of inputs and targets is subject to the specific contrast mechanism, 
resolution and SNR of the respective imaging technology. Thus, we propose that 
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digital staining should always be embedded in the context of input and target 
uncertainties of the actual stain as well as SNR of the imaging process to allow a fair 
evaluation of its performance.

•	 Generalizability: there is a generalization gap  [162] in DL and digital pathology, 
which also applies to digital staining. DS can often be very hardware-specific and 
can be prone to over-fitting. Therefore, it is essential to discuss generalizability. Ide-
ally, one should take a hardware-agnostic approach when testing a DS pipeline. It is 
recommended to validate and test a system across different imaging systems and/or 
different tissue types to evaluate if it generalizes well. This can further be extended to 
evaluate the generalizability across different experimenters, different staining meth-
ods or different data sets. See references [21, 22, 25, 34, 37] for good examples.

•	 Choice of the right loss function: After the selection of input and target technolo-
gies (which might be predefined for a given problem), the choice of the loss function 
is important. Different loss functions can emphasize different aspects of the image-
to-image regression task, e.g., high-level structural errors (SSIM), absolute errors at 
the pixel level (peak signal-to-noise ratios - PSNR), brightness and color (MAE) or 
custom loss functions (see section on Loss functions for more details).

•	 Image inspection and decision visualization: Besides the mere reporting of loss 
curves and performance metrics, it is indispensable to visually inspect and report 
the actual target and prediction images. Although the above mentioned loss func-
tions are suited for training and quantitative performance comparison, some can be 
ill-suited to detect hallucinations [128], artifacts or other localized prediction errors 
in the images. Moreover, decision visualization, like occlusion maps, Shapley values 
or perturbation studies can inform the researcher about features that are particularly 
important to the learning process. This can not only support de-bugging during the 
development of DS, but it can also offer valuable scientific feedback e.g., to under-
stand which parts of an input image are particularly relevant to predict a certain tar-
get.

•	 Interpretability: similar to the point above, ML models can often lack interpretabil-
ity, which prevents identification of biases and can thereby reduce generalizability. 
Interpretability is especially relevant for digital staining to prevent false halluzina-
tions from overfitting. A good rule of thumb is that simpler models with a smaller 
number of parameters are more interpretable. Furthermore, it is preferred to create 
more interpretable models from the beginning instead of post-hoc explanations of 
complicated models [163].

•	 Availability of code & data: Whenever possible, it is recommended to make code 
and data available to other researchers, according to the FAIR principle (Findability, 
Accessibility, Interoperability, and Reuse of digital assets). This enhances trustworthi-
ness and transparency of the general scientific procedure and further enables other 
researchers to test new approaches, especially since good data sets of paired images 
might be a bottleneck for many ML researchers. Positive examples, where code and 
data were made public are [21, 22, 25, 34, 50, 93, 94, 104, 135, 136, 151].

•	 Multi-modal imaging: Combinations of different contrast mechanisms for a richer 
information content an be more robust. Examples include FPM as a natural com-
bination of amplitude and phase  [29], dark field reflectance and autofluorescence 
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(DRUM)  [30] or complementary nonlinear techniques, like CARS, SHG and two-
photon AF [31–33].

Caution & pitfalls
As antithesis to the methods of good practice discussed above, we identify certain pit-
falls that can reduce the overall success of digital staining (i.e., prediction performance, 
robustness, validity, computation time, and required number of examples). Generally, we 
consider the error analysis of digital staining to be not fully developed yet. While most 
articles in the field do a very good job to report a growing collection of ML performance 
metrics, a holistic error analysis of the entire process, is not part of the state-of-the-art. 
We postulate that error analysis for digital staining should include modeling uncertain-
ties (ML performance metrics, training curves but also errors from pre-processing, e.g., 
image registration) and biological uncertainties (binding specificity, purity of cell cul-
tures, contamination, bleaching of fluorescence), as well as optical uncertainties (con-
trast, resolution, SNR). Moreover, high uncertainties in input contrast and target ‘ground 
truth’ will remain undetected, if data from the same general population (e.g., the same 
target stain and same imaging system) are used for the validation of predictions and for 
the overall performance evaluation.

Conclusion & future perspectives for digital staining
Despite this role as gold-standard, staining protocols face several challenges, such as a 
need for extensive, manual processing of samples, substantial time delays, altered tissue 
homeostasis, limited choice of contrast agents for a given sample, 2D imaging instead 
of 3D tomography and many more. Label-free optical technologies, on the other hand, 
do not rely on exogenous and artificial markers, by exploiting intrinsic optical contrast 
mechanisms, where the specificity is typically less obvious to the human observer. Over 
the past few years, digital staining has emerged as a promising concept to use modern 
deep learning for the translation from optical contrast to established biochemical con-
trast of actual stainings. In this following chapter, we present potential future trends and 
challenges, as well as our view on the broader impact on clinical diagnostics, research, 
and biotechnology.

Generally, medical diagnostics in remote and resource-limited settings would greatly 
profit from a low-cost, stainless approach like digital staining. When applied to simple 
and robust systems, like portable white-light or phase contrast microscopes, this could 
enable reasonable diagnostic yield from inexpensive hardware. On the other hand, label-
free technologies, like MPM, CARS, PAM, FPM and others, are growing fields of 
research in high-income contries, and yet digital staining is currently still under-inves-
tigated for these emerging techniques. Thus, we foresee a further implementations of 
digital staining for these more advanced optical contrast mechanisms. Furthermore, we 
believe that the input and target images with rely more on multiple different stains and/
or mpIF, which was shown to have a higher accuracy in diagnostic prediction as com-
pared to single stainings [164].

In the branch of ML models that are used for digital staining, several innovations can 
be imagined. For once, multi-task learning is an emerging concept that is being used for 
ML in optical microscopy. As it was already realized for digital staining with auxiliary 
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tasks [39], it will likely become more relevant for this field in the future. The concept of 
multi-domain image translation, i.e., training a single model to learn mappings among 
multiple domains, was already implemented in a larger number of publications [22, 72, 
73, 82, 102]. In a similar fashion, physics-informed learning and integration of prior 
information or simulation data into the learning process are interesting concepts in 
modern ML research. Since these are well-suited to increase robustness and generaliz-
ability, they would probably be able to address several challenges in modern digital stain-
ing, as in the case of hallucinations. This concept has not really found its way to digital 
staining yet, except for publications that employed simulations to improve the training 
process [25] or that modeled the microscope’s point spread function in the learning of 
an adversarial neural network to improve digital staining [25]. The trend in the develop-
ment of new ML models, from classical ML over DL to GAN models, is likely to con-
tinue and to produce entirely new concepts for ML models. One potential candidate is 
Adversarial Diffusion Models. These are already used to translate between MRI and CT 
data [165], which is a very similar problem to digital staining in optical microscopy.

The continuation of current trends as well as potential innovations in the field will 
very likely result in a series of exciting new applications for digital staining. Although 
digital staining of histology sections has shown to facilitate easier, faster and potentially 
more accurate clinical diagnosis in several research publications, a full FDA approval as 
medical product will remain challenging, due to extensive documentation requirements 
and current technical limitations. We believe that this technique is currently more inter-
esting for cell cultures, as discussed in this review. Since this use-case does not imply 
sensitive patient data or critical decisions on clinical diagnosis, a commercialization in 
the biotechnology sector might be more feasible. The technique of 3D fluorescent labe-
ling based on phase microscopy was already patented [118]. Following this trend, digital 
staining could potentially be used for organoids, that gained a lot of popularity in the 
recent years.

In the long-term future, however, clinical applications of digital staining would not 
only be limited to tissue sections but could become a vital tool for clinical in vivo imag-
ing. Currently, DL is already used to improve image quality in endomicroscopes [166], 
and endoscopic or endomicroscopic implementations are already available for many 
imaging technologies and optical contrast mechanisms mentioned in this review. This 
next step of digital staining, however, needs to be accompanied by designing more 
robust, generalizable and interpretable models, as discussed above. This point was also 
identified by Jiang et al., who mentioned the problems of variable clinical factors regard-
ing imaging microscopes, staining techniques, patch extraction, and selection and stated 
that “To address this issue, designing more robust architectures can make the model less 
dependent on data quality in digital medicine” [14].

Supplementary materials & analysis of literature
Methods for selecting literature

Literature review

For the literature data base in this review, 108 articles between 2005 and January 2023 
were reviewed and categorized. We considered peer-reviewed articles of above two 
pages length, not including short conference abstracts or un-reviewed preprints. 
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Articles were considered as digital staining, if an image-to-image regression for micros-
copy images in different contrast domains was carried out. Articles that performed con-
ventional segmentation tasks or stain normalization (i.e., transfer from one domain to 
the same domain) were not considered. The date of acceptance was used as time stamp. 
If that was not available, the date of publication was used. The full data base of the all 
reviewed articles that were used for the figures in this paper is available as Supplemen-
tary material. The keyword search on google scholar contained the followed keywords 
and possible permutations thereof: virtual fluorescence, virtual staining, in silica label, 
computational specificity, computational stain, digital stain, in silico stain, pseudo H&E, 
in silico label.

Visualizations

Literature data in Figs.  2  A, 5 and in supplementary Figs.  S1 and S2 were han-
dled using the pandas library and plotted in Python. Figure  5  B was generated using 
plotly.express.parallel_categories . An interactive version of this plot is available as Sup-
plementary file.
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