• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0926001 (2024)
Yanli Su1, Yuanbo Wang1, Lincong Ji1, Cun Zhang1, and Qichang Jiang1、2、*
Author Affiliations
  • 1Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, Shanxi, China
  • 2Laboratory of Optoelectronic Information Science and Technology of Shanxi Province, Yuncheng 044000, Shanxi, China
  • show less
    DOI: 10.3788/LOP230582 Cite this Article Set citation alerts
    Yanli Su, Yuanbo Wang, Lincong Ji, Cun Zhang, Qichang Jiang. Propagation Characteristics of Lommel-Gaussian Beams in a Gradient-Index Medium[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0926001 Copy Citation Text show less
    Three-dimensional intensity envelopes of Lommel-Gaussian beams and corresponding two-dimensional projection drawing. (a) (b) ω0=10 μm; (c) (d) ω0=20 μm; (e) (f) ω0=30 μm
    Fig. 1. Three-dimensional intensity envelopes of Lommel-Gaussian beams and corresponding two-dimensional projection drawing. (a) (b) ω0=10 μm; (c) (d) ω0=20 μm; (e) (f) ω0=30 μm
    Two-dimensional projection drawing of Lommel-Gaussian beams with different half-cone angles. (a) β=5o; (b) β=10o; (c) β=15o
    Fig. 2. Two-dimensional projection drawing of Lommel-Gaussian beams with different half-cone angles. (a) β=5o; (b) β=10o; (c) β=15o
    Two-dimensional projection drawing of Lommel-Gaussian beams with different topological charges. (a) m=1; (b) m=3; (c) m=4
    Fig. 3. Two-dimensional projection drawing of Lommel-Gaussian beams with different topological charges. (a) m=1; (b) m=3; (c) m=4
    Two-dimensional projection drawing of Lommel-Gaussian beams with different asymmetric parameters. (a) c=0.3; (b) c=0.6; (c) c=0.9; (d) c=0.9exp(iπ/4); (e) c=0.9exp(iπ/3); (f) c=0.9exp(iπ/2);(g) c=0.9exp(i2π/3);(h) c=0.9exp(i3π/4); (i) c=0.9exp(i5π/6)
    Fig. 4. Two-dimensional projection drawing of Lommel-Gaussian beams with different asymmetric parameters. (a) c=0.3; (b) c=0.6; (c) c=0.9; (d) c=0.9exp(iπ/4); (e) c=0.9exp(iπ/3); (f) c=0.9exp(iπ/2);(g) c=0.9exp(i2π/3);(h) c=0.9exp(i3π/4); (i) c=0.9exp(i5π/6)
    Schematic representation of beam propagation
    Fig. 5. Schematic representation of beam propagation
    Tansverse intensity distribution of the Lommel-Gaussian beams at different propagations (m=2, β=5o, ω0=20 μm). (a1)‒(a6) c=0.6; (b1)‒(b6) c=0.9 exp(iπ/4)
    Fig. 6. Tansverse intensity distribution of the Lommel-Gaussian beams at different propagations (m=2, β=5o, ω0=20 μm). (a1)‒(a6) c=0.6; (b1)‒(b6) c=0.9 exp(iπ/4)
    Propagation characteristics of the Lommel-Gaussian beams in free space [m=2, β=5o, ω0=20 μm, c=0.9exp(iπ/2)]. (a)‒(c) Two-dimentional projection drawing; (d)‒(f) corresponding phase distribution map
    Fig. 7. Propagation characteristics of the Lommel-Gaussian beams in free space [m=2, β=5o, ω0=20 μm, c=0.9exp(iπ/2)]. (a)‒(c) Two-dimentional projection drawing; (d)‒(f) corresponding phase distribution map
    Propagation characteristics of the Lommel-Gaussian beams in free space (m=2, β=5o, ω0=20 μm, c=0.6). (a)‒(c) Two-dimentional projection drawing; (d)‒(f) corresponding phase distribution map
    Fig. 8. Propagation characteristics of the Lommel-Gaussian beams in free space (m=2, β=5o, ω0=20 μm, c=0.6). (a)‒(c) Two-dimentional projection drawing; (d)‒(f) corresponding phase distribution map
    Yanli Su, Yuanbo Wang, Lincong Ji, Cun Zhang, Qichang Jiang. Propagation Characteristics of Lommel-Gaussian Beams in a Gradient-Index Medium[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0926001
    Download Citation