• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907006 (2024)
Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, and Duo Lin*
Author Affiliations
  • Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian , China
  • show less
    DOI: 10.3788/CJL231604 Cite this Article Set citation alerts
    Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, Duo Lin. Research Progress on Epidemic Virus Detection Based on Surface‑Enhanced Raman Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(9): 0907006 Copy Citation Text show less
    References

    [1] Kirtane A R, Verma M, Karandikar P et al. Nanotechnology approaches for global infectious diseases[J]. Nature Nanotechnology, 16, 369-384(2021).

    [2] Durmuş S, Ülgen K Ö. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses[J]. FEBS Open Bio, 7, 96-107(2017).

    [3] Saviñon-Flores F, Méndez E, López-Castaños M et al. A review on SERS-based detection of human virus infections: influenza and coronavirus[J]. Biosensors, 11, 66(2021).

    [4] Morens D M, Fauci A S. Emerging pandemic diseases: how we got to COVID-19[J]. Cell, 182, 1077-1092(2020).

    [5] Xiao M, Tian F, Liu X et al. Virus detection: from state-of-the-art laboratories to smartphone-based point-of-care testing[J]. Advanced Science, 9, e2105904(2022).

    [6] Lukose J, Barik A K, Mithun N et al. Raman spectroscopy for viral diagnostics[J]. Biophysical Reviews, 15, 199-221(2023).

    [7] Lin C Y, Hwang D, Chiu N C et al. Increased detection of viruses in children with respiratory tract infection using PCR[J]. International Journal of Environmental Research and Public Health, 17, 564(2020).

    [8] Liu S Q, Li X, Deng C L et al. Development and evaluation of one-step multiplex real-time RT-PCR assay for simultaneous detection of Zika virus and Chikungunya virus[J]. Journal of Medical Virology, 90, 389-396(2018).

    [9] Ou T P, Yun C, Auerswald H et al. Improved detection of dengue and Zika viruses using multiplex RT-qPCR assays[J]. Journal of Virological Methods, 282, 113862(2020).

    [10] Bustin S A, Nolan T. RT-qPCR testing of SARS-CoV-2: a primer[J]. International Journal of Molecular Sciences, 21, 3004(2020).

    [11] Soroka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): the better sibling of PCR?[J]. Cells, 10, 1931(2021).

    [12] Cassedy A, Parle-McDermott A, O’Kennedy R. Virus detection: a review of the current and emerging molecular and immunological methods[J]. Frontiers in Molecular Biosciences, 8, 637559(2021).

    [13] Sitjar J, Liao J D, Lee H et al. Detection of live SARS-CoV-2 virus and its variants by specially designed SERS-active substrates and spectroscopic analyses[J]. Analytica Chimica Acta, 1256, 341151(2023).

    [14] Xu H X, Xu B, Xiong J C et al. Research progress of surface plasmon resonance and local surface plasmon resonance in virus detection[J]. Chinese Journal of Lasers, 49, 1507401(2022).

    [15] Wang Y Q, Yan B, Chen L X. SERS tags: novel optical nanoprobes for bioanalysis[J]. Chemical Reviews, 113, 1391-1428(2013).

    [16] Pérez-Jiménez A I, Lyu D Y, Lu Z X et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments[J]. Chemical Science, 11, 4563-4577(2020).

    [17] Sharma B, Frontiera R R, Henry A I et al. SERS: materials, applications, and the future[J]. Materials Today, 15, 16-25(2012).

    [18] Porter M D, Lipert R J, Siperko L M et al. SERS as a bioassay platform: fundamentals, design, and applications[J]. Chemical Society Reviews, 37, 1001-1011(2008).

    [19] Wang Z Y, Zong S F, Wu L et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews, 117, 7910-7963(2017).

    [20] Zong C, Xu M X, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [21] Pilot R, Signorini R, Durante C et al. A review on surface-enhanced Raman scattering[J]. Biosensors, 9, 57(2019).

    [22] Payne T D, Klawa S J, Jian T Y et al. Catching COVID: engineering peptide-modified surface-enhanced Raman spectroscopy sensors for SARS-CoV-2[J]. ACS Sensors, 6, 3436-3444(2021).

    [23] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [24] Itoh T, Procházka M, Dong Z C et al. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications[J]. Chemical Reviews, 123, 1552-1634(2023).

    [25] Das R S, Agrawal Y K. Raman spectroscopy: recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 57, 163-176(2011).

    [26] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [27] Jeanmaire D L, Duyne R P V. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 84, 1-20(1977).

    [28] Kudelski A. Raman spectroscopy of surfaces[J]. Surface Science, 603, 1328-1334(2009).

    [29] Cialla D, März A, Böhme R et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends[J]. Analytical and Bioanalytical Chemistry, 403, 27-54(2012).

    [30] Bell S E J, Charron G, Cortés E et al. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice[J]. Angewandte Chemie: International Ed. in English, 59, 5454-5462(2020).

    [31] Yang B, Jin S L, Guo S et al. Recent development of SERS technology: semiconductor-based study[J]. ACS Omega, 4, 20101-20108(2019).

    [32] Louten J[M]. Essential human virology, 19-29(2016).

    [33] Sanjuán R, Nebot M R, Chirico N et al. Viral mutation rates[J]. Journal of Virology, 84, 9733-9748(2010).

    [34] Zhou P, Yang X L, Wang X G et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 579, 270-273(2020).

    [35] Loeffelholz M J, Tang Y W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art[J]. Emerging Microbes & Infections, 9, 747-756(2020).

    [36] Yang Y, Peng Y S, Lin C L et al. Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection[J]. Nano-Micro Letters, 13, 109(2021).

    [37] Zhang Z, Jiang S, Wang X T et al. A novel enhanced substrate for label-free detection of SARS-CoV-2 based on surface-enhanced Raman scattering[J]. Sensors and Actuators B, 359, 131568(2022).

    [38] Marques A C, Pinheiro T, Morais M et al. Bottom-up microwave-assisted seed-mediated synthesis of gold nanoparticles onto nanocellulose to boost stability and high performance for SERS applications[J]. Applied Surface Science, 561, 150060(2021).

    [39] Sarychev A K, Sukhanova A, Ivanov A V et al. Label-free detection of the receptor-binding domain of the SARS-CoV-2 spike glycoprotein at physiologically relevant concentrations using surface-enhanced Raman spectroscopy[J]. Biosensors, 12, 300(2022).

    [40] Wu P, Luo X J, Xu Y H et al. Long-range SERS detection of the SARS-CoV-2 antigen on a well-ordered gold hexagonal nanoplate film[J]. Analytical Chemistry, 94, 17541-17550(2022).

    [41] Leonardi A A, Sciuto E L, Lo Faro M J et al. Molecular fingerprinting of the omicron variant genome of SARS-CoV-2 by SERS spectroscopy[J]. Nanomaterials, 12, 2134(2022).

    [42] Paria D, Kwok K S, Raj P et al. Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates[J]. Nano Letters, 22, 3620-3627(2022).

    [43] Ramachandran K, Daoudi K, Columbus S et al. Facile, Flexible, Fast’: highly sensitive and Low-cost paper sensor for real time spike protein sensing with SERS[J]. Materials Science and Engineering: B, 286, 115984(2022).

    [44] Peng Y S, Lin C L, Li Y Y et al. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect[J]. Matter, 5, 694-709(2022).

    [45] Feng E D, Zheng T T, He X X et al. Plasmon-induced charge transfer-enhanced Raman scattering on a semiconductor: toward amplification-free quantification of SARS-CoV-2[J]. Angewandte Chemie: International Ed. in English, 62, e202309249(2023).

    [46] Li T Y, Srivastava S, Liu J et al. Label-free SARS-CoV-2 detection platform based on surface-enhanced Raman spectroscopy with support vector machine spectral pattern recognition[J]. Engineered Science, 23, 862(2023).

    [47] Qin J W, Tian X D, Liu S Y et al. Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy[J]. Talanta, 267, 125080(2024).

    [48] Yeh Y J, Le T N, Hsiao W W W et al. Plasmonic nanostructure-enhanced Raman scattering for detection of SARS-CoV-2 nucleocapsid protein and spike protein variants[J]. Analytica Chimica Acta, 1239, 340651(2023).

    [49] Mo W B, Wen J X, Huang J L et al. Classification of coronavirus spike proteins by deep-learning-based Raman spectroscopy and its interpretative analysis[J]. Journal of Applied Spectroscopy, 89, 1203-1211(2023).

    [50] Lai S X, Liu Y, Fang S B et al. Ultrasensitive detection of SARS-CoV-2 antigen using surface-enhanced Raman spectroscopy-based lateral flow immunosensor[J]. Journal of Biophotonics, 16, e202300004(2023).

    [51] Guan P C, Zhang H, Li Z Y et al. Rapid point-of-care assay by SERS detection of SARS-CoV-2 virus and its variants[J]. Analytical Chemistry, 94, 17795-17802(2022).

    [52] Antoine D, Mohammadi M, Vitt M et al. Rapid, point-of-care scFv-SERS assay for femtogram level detection of SARS-CoV-2[J]. ACS Sensors, 7, 866-873(2022).

    [53] Zhang M L, Li X D, Pan J L et al. Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor[J]. Biosensors & Bioelectronics, 190, 113421(2021).

    [54] Vedelago C, Li J R, Lowry K et al. A multiplexed SERS microassay for accurate detection of SARS-CoV-2 and variants of concern[J]. ACS Sensors, 8, 1648-1657(2023).

    [55] Zhang J J, Miao X P, Song C Y et al. Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA[J]. Biosensors & Bioelectronics, 212, 114379(2022).

    [56] Lin X L, Weng Y L, Liu Y et al. Ratiometric SERS sensing chip for high precision and ultra-sensitive detection of SARS-CoV-2 RNA in human saliva[J]. Sensors and Actuators B: Chemical, 399, 134803(2024).

    [57] Chen H, Park S G, Choi N et al. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor[J]. ACS Sensors, 6, 2378-2385(2021).

    [58] Yin B H, Ho W K H, Zhang Q et al. Magnetic-responsive surface-enhanced Raman scattering platform with tunable hot spot for ultrasensitive virus nucleic acid detection[J]. ACS Applied Materials & Interfaces, 14, 4714-4724(2022).

    [59] Gao Y K, Han Y K, Wang C et al. Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles[J]. Analytica Chimica Acta, 1154, 338330(2021).

    [60] Wu Y X, Dang H J, Park S G et al. SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates[J]. Biosensors & Bioelectronics, 197, 113736(2022).

    [61] Tabarov A, Vitkin V, Andreeva O et al. Detection of A and B influenza viruses by surface-enhanced Raman scattering spectroscopy and machine learning[J]. Biosensors, 12, 1065(2022).

    [62] Gribanyov D, Zhdanov G, Olenin A et al. SERS-based colloidal aptasensors for quantitative determination of influenza virus[J]. International Journal of Molecular Sciences, 22, 1842(2021).

    [63] Kim H, Kang H, Kim H N et al. Development of 6E3 antibody-mediated SERS immunoassay for drug-resistant influenza virus[J]. Biosensors & Bioelectronics, 187, 113324(2021).

    [64] Zhdanov G, Nyhrikova E, Meshcheryakova N et al. A combination of membrane filtration and raman-active DNA ligand greatly enhances sensitivity of SERS-based aptasensors for influenza a virus[J]. Frontiers in Chemistry, 10, 937180(2022).

    [65] Wang X W, Li S, Qu H et al. SERS-based immunomagnetic bead for rapid detection of H5N1 influenza virus[J]. Influenza and Other Respiratory Viruses, 17, e13114(2023).

    [66] Kukushkin V, Kristavchuk O, Andreev E et al. Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids[J]. Frontiers in Bioengineering and Biotechnology, 10, 1076749(2023).

    [67] Lu M D, Joung Y, Jeon C S et al. Dual-mode SERS-based lateral flow assay strips for simultaneous diagnosis of SARS-CoV-2 and influenza a virus[J]. Nano Convergence, 9, 39(2022).

    [68] Garsuault D, El Messaoudi S, Prabakaran M et al. Detection of several respiratory viruses with Surface-Enhanced Raman Spectroscopy coupled with Artificial Intelligence[J]. Clinical Spectroscopy, 5, 100025(2023).

    [69] Chen H, Park S K, Joung Y et al. SERS-based dual-mode DNA aptasensors for rapid classification of SARS-CoV-2 and influenza A/H1N1 infection[J]. Sensors and Actuators B, 355, 131324(2022).

    [70] Liu Z Z, Wang C W, Zheng S et al. Simultaneously ultrasensitive and quantitative detection of influenza A virus, SARS-CoV-2, and respiratory syncytial virus via multichannel magnetic SERS-based lateral flow immunoassay[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 47, 102624(2023).

    [71] Liang J J, Wu L, Wang Y Q et al. SERS/photothermal-based dual-modal lateral flow immunoassays for sensitive and simultaneous antigen detection of respiratory viral infections[J]. Sensors and Actuators B: Chemical, 389, 133875(2023).

    [72] Anwar S, Khawar M B, Ovais M et al. Gold nanocubes based optical detection of HIV-1 DNA via surface enhanced Raman spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis, 226, 115242(2023).

    [73] Yadav S, Senapati S, Desai D P et al. Portable and sensitive Ag nanorods based SERS platform for rapid HIV-1 detection and tropism determination[J]. Colloids and Surfaces B, 198, 111477(2021).

    [74] Yadav S, Senapati S, Kulkarni S S et al. A SERS based clinical study on HIV-1 viral load quantification and determination of disease prognosis[J]. Journal of Photochemistry and Photobiology B, 239, 112629(2023).

    [75] Winder N, Gohar S, Muthana M. Norovirus: an overview of virology and preventative measures[J]. Viruses, 14, 2811(2022).

    [76] Achadu O J, Abe F, Li T C et al. Molybdenum trioxide quantum dot-encapsulated nanogels for virus detection by surface-enhanced Raman scattering on a 2D substrate[J]. ACS Applied Materials & Interfaces, 13, 27836-27844(2021).

    [77] Achadu O J, Abe F, Hossain F et al. Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus[J]. Biosensors & Bioelectronics, 193, 113540(2021).

    [78] Maasoumy B, Wedemeyer H. Natural history of acute and chronic hepatitis C[J]. Best Practice & Research. Clinical Gastroenterology, 26, 401-412(2012).

    [79] Kashif M, Majeed M I, Hanif M A et al. Surface Enhanced Raman Spectroscopy of the serum samples for the diagnosis of Hepatitis C and prediction of the viral loads[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118729(2020).

    [80] Rafiq S, Majeed M I, Nawaz H et al. Surface-enhanced Raman spectroscopy for analysis of PCR products of viral RNA of hepatitis C patients[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 259, 119908(2021).

    [81] Sang S W, Yue Y J, Wang Y G et al. The epidemiology and evolutionary dynamics of massive dengue outbreak in China, 2019[J]. Frontiers in Microbiology, 14, 1156176(2023).

    [82] Wiwanitkit V. Concurrent malaria and dengue infection: a brief summary and comment[J]. Asian Pacific Journal of Tropical Biomedicine, 1, 326-327(2011).

    [83] Farokhinejad F, Li J R, Hugo L E et al. Detection of dengue virus 2 with single infected mosquito resolution using yeast affinity bionanofragments and plasmonic SERS nanoboxes[J]. Analytical Chemistry, 94, 14177-14184(2022).

    [84] Song C Y, Zhang J J, Liu Y et al. Highly sensitive SERS assay of DENV gene via a cascade signal amplification strategy of localized catalytic hairpin assembly and hybridization chain reaction[J]. Sensors and Actuators B, 325, 128970(2020).

    [85] Jacob S S, Lukose J, Bankapur A et al. Micro-Raman spectroscopy study of optically trapped erythrocytes in malaria, dengue and leptospirosis infections[J]. Frontiers in Medicine, 9, 858776(2022).

    [86] Tripathi M N, Jangir P, Aakriti et al. A novel approach for rapid and sensitive detection of Zika virus utilizing silver nanoislands as SERS platform[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 302, 123045(2023).

    [87] Masmejan S, Musso D, Vouga M et al. Zika virus[J]. Pathogens, 9, 898(2020).

    [88] Jia X F, Liu Z Z, Peng Y J et al. Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS-LFIA detector[J]. Mikrochimica Acta, 188, 206(2021).

    [89] Kaján G L, Doszpoly A, Tarján Z L et al. Virus-host coevolution with a focus on animal and human DNA viruses[J]. Journal of Molecular Evolution, 88, 41-56(2020).

    [90] Schiller J T, Lowy D R. An introduction to virus infections and human cancer[J]. Recent Results in Cancer Research, 217, 1-11(2021).

    [91] Seeger C, Mason W S. Molecular biology of hepatitis B virus infection[J]. Virology, 479/480, 672-686(2015).

    [92] Kamińska A, Witkowska E, Winkler K et al. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system[J]. Biosensors & Bioelectronics, 66, 461-467(2015).

    [93] Du Y W, Ji S F, Dong Q Y et al. Amplification-free detection of HBV DNA mediated by CRISPR-Cas12a using surface-enhanced Raman spectroscopy[J]. Analytica Chimica Acta, 1245, 340864(2023).

    [94] Batool F, Nawaz H, Majeed M I et al. SERS-based viral load quantification of hepatitis B virus from PCR products[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119722(2021).

    [95] Karagoz A, Tombuloglu H, Alsaeed M et al. Monkeypox (mpox) virus: classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis[J]. Journal of Infection and Public Health, 16, 531-541(2023).

    [96] Zhang Z, Jiang H, Jiang S et al. Rapid detection of the monkeypox virus genome and antigen proteins based on surface-enhanced Raman spectroscopy[J]. ACS Applied Materials & Interfaces, 15, 34419-34426(2023).

    [97] Yu Q, Li J X, Zheng S et al. Molybdenum disulfide-loaded multilayer AuNPs with colorimetric-SERS dual-signal enhancement activities for flexible immunochromatographic diagnosis of monkeypox virus[J]. Journal of Hazardous Materials, 459, 132136(2023).

    [98] Dunmire S K, Verghese P S, Balfour H H, Jr. Primary Epstein-Barr virus infection[J]. Journal of Clinical Virology, 102, 84-92(2018).

    [99] Houen G, Trier N H. Epstein-Barr virus and systemic autoimmune diseases[J]. Frontiers in Immunology, 11, 587380(2021).

    [100] Tiwari D, Jakhmola S, Pathak D K et al. Temporal in vitro Raman spectroscopy for monitoring replication kinetics of Epstein-Barr virus infection in glial cells[J]. ACS Omega, 5, 29547-29560(2020).

    [101] Sun J L, Wang R, Wang L et al. Visual/quantitative SERS biosensing chip based on Au-decorated polystyrene sphere microcavity arrays[J]. Sensors and Actuators B: Chemical, 388, 133869(2023).

    [102] McGeoch D J, Rixon F J, Davison A J. Topics in herpesvirus genomics and evolution[J]. Virus Research, 117, 90-104(2006).

    [103] Pezzotti G, Ohgitani E, Imamura H et al. Raman multi-omic snapshot and statistical validation of structural differences between herpes simplex type I and Epstein-Barr viruses[J]. International Journal of Molecular Sciences, 24, 15567(2023).

    [104] Gallardo J, Pérez-Illana M, Martín-González N et al. Adenovirus structure: what is new?[J]. International Journal of Molecular Sciences, 22, 5240(2021).

    [105] Greber U F, Flatt J W. Adenovirus entry: from infection to immunity[J]. Annual Review of Virology, 6, 177-197(2019).

    [106] Chang C W, Liao J D, Shiau A L et al. Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate[J]. Sensors and Actuators B: Chemical, 156, 471-478(2011).

    [107] Kukushkin V, Ambartsumyan O, Subekin A et al. Multiplex lithographic SERS aptasensor for detection of several respiratory viruses in one pot[J]. International Journal of Molecular Sciences, 24, 8081(2023).

    [108] Yin L J, Man S L, Ye S Y et al. CRISPR-Cas based virus detection: recent advances and perspectives[J]. Biosensors & Bioelectronics, 193, 113541(2021).

    [109] Ma L, Zhang W L, Yin L J et al. A SERS-signalled, CRISPR/Cas-powered bioassay for amplification-free and anti-interference detection of SARS-CoV-2 in foods and environmental samples using a single tube-in-tube vessel[J]. Journal of Hazardous Materials, 452, 131195(2023).

    [110] Su A L, Liu Y, Cao X M et al. A universal CRISPR/Cas12a-mediated AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform for virus gene detection[J]. Sensors and Actuators B: Chemical, 369, 132295(2022).

    [111] Su A L, Liu Y, Cao X M et al. Direct virus gene detection: a CRISPR/dCas9-mediated surface-enhanced Raman scattering strategy with enzyme-catalyzed signal amplification[J]. Analytical Chemistry, 95, 5927-5936(2023).

    [112] Wang H M, Su A L, Bao C X et al. A CRISPR/Cas12a-SERS platform for amplification-free detection of African swine fever virus genes[J]. Talanta, 267, 125225(2024).

    [113] Liang J J, Teng P J, Xiao W et al. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples[J]. Journal of Nanobiotechnology, 19, 273(2021).

    [114] Wang W, Ma P Y, Song D Q. Applications of surface-enhanced Raman spectroscopy based on portable Raman spectrometers: a review of recent developments[J]. Luminescence, 37, 1822-1835(2022).

    [115] Kaladharan K, Chen K H, Chen P H et al. Dual-clamped one-pot SERS-based biosensors for rapid and sensitive detection of SARS-CoV-2 using portable Raman spectrometer[J]. Sensors and Actuators B, 393, 134172(2023).

    [116] Ansah I B, An T, Yang J Y et al. Electrochemical synthesis of 3D plasmonic-molecule nanocomposite materials for in situ label-free molecular detections[J]. Advanced Materials Interfaces, 8, 2101201(2021).

    [117] Pramanik A, Gao Y, Patibandla S et al. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles[J]. Nanoscale Advances, 3, 1588-1596(2021).

    [118] Liu F X, Zhang L H, Huang X. Application of Raman spectroscopy in cancer diagnosis[J]. Laser & Optoelectronics Progress, 59, 0617016(2022).

    Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, Duo Lin. Research Progress on Epidemic Virus Detection Based on Surface‑Enhanced Raman Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(9): 0907006
    Download Citation