• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907006 (2024)
Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, and Duo Lin*
Author Affiliations
  • Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian , China
  • show less
    DOI: 10.3788/CJL231604 Cite this Article Set citation alerts
    Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, Duo Lin. Research Progress on Epidemic Virus Detection Based on Surface‑Enhanced Raman Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(9): 0907006 Copy Citation Text show less
    Schematic diagram of virus detection based on SERS technology
    Fig. 1. Schematic diagram of virus detection based on SERS technology
    SERS sensors and platforms are designed in a variety of diverse ways for label-free detection of SARS-CoV-2. (a) Schematic diagram of the design and operation process of the COVID-19 SERS sensor[36]; (b) flexible substrate combined with SERS metal-insulator-metal nanostructures and machine learning-based label-free detection platform[42]; (c) schematic diagram of SnS2 microsphere substrates design[44]; (d) Raman enhancement mechanism of Cu2O nanoarray with significant enhancement factor[45]
    Fig. 2. SERS sensors and platforms are designed in a variety of diverse ways for label-free detection of SARS-CoV-2. (a) Schematic diagram of the design and operation process of the COVID-19 SERS sensor[36]; (b) flexible substrate combined with SERS metal-insulator-metal nanostructures and machine learning-based label-free detection platform[42]; (c) schematic diagram of SnS2 microsphere substrates design[44]; (d) Raman enhancement mechanism of Cu2O nanoarray with significant enhancement factor[45]
    Machine learning techniques are applied to SARS-CoV-2 label-free detection. (a) Identification of pure S protein standard samples by SERS spectroscopy using PCA[47]; (b) SERS biosensors are engineered with 3D porous Ag nanoparticle-based microplasma-engineered nanoassemblies (denoted as AgMEN) deposited on cellulose paper (left) and functionalized with antibodies (AgMEN@Ab)(center part) to detect the corresponding antigens by analyzing the SERS response (right)[48]
    Fig. 3. Machine learning techniques are applied to SARS-CoV-2 label-free detection. (a) Identification of pure S protein standard samples by SERS spectroscopy using PCA[47]; (b) SERS biosensors are engineered with 3D porous Ag nanoparticle-based microplasma-engineered nanoassemblies (denoted as AgMEN) deposited on cellulose paper (left) and functionalized with antibodies (AgMEN@Ab)(center part) to detect the corresponding antigens by analyzing the SERS response (right)[48]
    Application of SERS nanoprobes in label detection and differentiation of SARS-CoV-2. (a) Schematic of the SERS assay based on one-step aptamer recognition for rapid point-of-care detection of SARS-CoV-2 virus within 5 min[51]; (b) stepwise reactions of RBD probe for SARS-CoV-2 capture and detection with SERS nanotags, for virus and variant identification based on the average Raman spectrum results[54]
    Fig. 4. Application of SERS nanoprobes in label detection and differentiation of SARS-CoV-2. (a) Schematic of the SERS assay based on one-step aptamer recognition for rapid point-of-care detection of SARS-CoV-2 virus within 5 min[51]; (b) stepwise reactions of RBD probe for SARS-CoV-2 capture and detection with SERS nanotags, for virus and variant identification based on the average Raman spectrum results[54]
    Application of SERS label detection method for the detection of RNA and proteins from SARS-CoV-2 virus lysates.(a) Schematic illustrations of the preparation of SERS tags and the signal amplification strategy for SERS detection of SARS-CoV-2 RNA[55]; (b) preparation of Au@4MBN@Ag NPs and fabrication of two-dimensional SERS sensing chip for SARS-CoV-2 RNA detection[56]; (c) schematic illustration of the quantitative evaluation of SARS-CoV-2 using the SERS-based aptasensor[57]
    Fig. 5. Application of SERS label detection method for the detection of RNA and proteins from SARS-CoV-2 virus lysates.(a) Schematic illustrations of the preparation of SERS tags and the signal amplification strategy for SERS detection of SARS-CoV-2 RNA[55]; (b) preparation of Au@4MBN@Ag NPs and fabrication of two-dimensional SERS sensing chip for SARS-CoV-2 RNA detection[56]; (c) schematic illustration of the quantitative evaluation of SARS-CoV-2 using the SERS-based aptasensor[57]
    Multi-mode virus detection scheme incorporating SERS technology. (a) Schematic of the triple-mode biosensors for COVID-19 virus RNA detection[59]; (b) PCR amplification process for bridge DNAs and SERS detections for bridge DNAs[60]
    Fig. 6. Multi-mode virus detection scheme incorporating SERS technology. (a) Schematic of the triple-mode biosensors for COVID-19 virus RNA detection[59]; (b) PCR amplification process for bridge DNAs and SERS detections for bridge DNAs[60]
    SERS labeling method applied to the detection of influenza A virus. (a) Schematic diagram of using SERS assisted with pre-filtering to sensitively detect influenza A virus [64]; (b)schematic of the IMBSIs@Ag-SERS method for H5N1 influenza virus detection[65]
    Fig. 7. SERS labeling method applied to the detection of influenza A virus. (a) Schematic diagram of using SERS assisted with pre-filtering to sensitively detect influenza A virus [64]; (b)schematic of the IMBSIs@Ag-SERS method for H5N1 influenza virus detection[65]
    SERS labeling method applied to the detection and differentiation of multiple respiratory viruses. (a) Working principle of dual aptamer-immobilized Au nanopopcorn substrate for virus assays[69]; (b) collection of throat swab sample and operating procedure for the simultaneous quantitative detection of three respiratory viruses via the Fe3O4@Au-based SERS LFA strip[70]
    Fig. 8. SERS labeling method applied to the detection and differentiation of multiple respiratory viruses. (a) Working principle of dual aptamer-immobilized Au nanopopcorn substrate for virus assays[69]; (b) collection of throat swab sample and operating procedure for the simultaneous quantitative detection of three respiratory viruses via the Fe3O4@Au-based SERS LFA strip[70]
    SERS technology applied to the detection of human immunodeficiency virus (HIV-1) and norovirus (NoV). (a) Schematic diagram demonstrating rapid handheld SERS platform for HIV detection[73]; (b) the stepwise dual-modality NoV detection[77]
    Fig. 9. SERS technology applied to the detection of human immunodeficiency virus (HIV-1) and norovirus (NoV). (a) Schematic diagram demonstrating rapid handheld SERS platform for HIV detection[73]; (b) the stepwise dual-modality NoV detection[77]
    SERS technology applied to the detection of dengue virus (DENV). (a) Schematic of platform for DENV2 NS1 detection in a single infected mosquito sample with the integration of nanoyeast scFvs affinity probes and nanobox-based SERS nanotags[83]; (b) schematic illustration of SERS assay of DENV gene via a cascade enzyme-free signal amplification strategy of LCHA and HCR[84]
    Fig. 10. SERS technology applied to the detection of dengue virus (DENV). (a) Schematic of platform for DENV2 NS1 detection in a single infected mosquito sample with the integration of nanoyeast scFvs affinity probes and nanobox-based SERS nanotags[83]; (b) schematic illustration of SERS assay of DENV gene via a cascade enzyme-free signal amplification strategy of LCHA and HCR[84]
    SERS technology used for the detection of DNA viruses such as hepatitis B virus(HBV) and monkeypox virus(MPXV).(a) Schematic illustration showing the integration of a microfluidic device with the SERS-active substrate based on Au-Ag coated GaN surface[92]; (b) schematic diagram of CRISPR/Cas12a-SERS principle analysis[93]; (c) the principle of MPXV detection by colorimetric-SERS dual-mode ICA[97]
    Fig. 11. SERS technology used for the detection of DNA viruses such as hepatitis B virus(HBV) and monkeypox virus(MPXV).(a) Schematic illustration showing the integration of a microfluidic device with the SERS-active substrate based on Au-Ag coated GaN surface[92]; (b) schematic diagram of CRISPR/Cas12a-SERS principle analysis[93]; (c) the principle of MPXV detection by colorimetric-SERS dual-mode ICA[97]
    CRISPR/Cas-SERS platform applied to the detection of viral genetic material. (a) Schematic diagram of the gene detection by using the CRISPR/dCas9-based SERS method, assisted with HRP-Catalyzed signal amplification[111]; (b) schematic diagram of the proposed CRISPR/Cas12a-SERS platform for amplification-free ASFV dsDNA detection[112]
    Fig. 12. CRISPR/Cas-SERS platform applied to the detection of viral genetic material. (a) Schematic diagram of the gene detection by using the CRISPR/dCas9-based SERS method, assisted with HRP-Catalyzed signal amplification[111]; (b) schematic diagram of the proposed CRISPR/Cas12a-SERS platform for amplification-free ASFV dsDNA detection[112]
    Portable Raman spectrometer devices applied to SERS virus detection schemes. (a) Schematic illustration of SERS based immunoassay platform(with a portable Raman spectrometer)[115]; (b) schematic diagram of the detection of influenza A virus H1N1 by SERS and gold electrodeposition nanostructure[116]; (c) schematic diagram of a SERS detection method based on one-step aptamer identification using a portable Raman spectrometer for rapid and point-of-care detection of SARS-CoV-2 virus in less than 5 minutes[51]
    Fig. 13. Portable Raman spectrometer devices applied to SERS virus detection schemes. (a) Schematic illustration of SERS based immunoassay platform(with a portable Raman spectrometer)[115]; (b) schematic diagram of the detection of influenza A virus H1N1 by SERS and gold electrodeposition nanostructure[116]; (c) schematic diagram of a SERS detection method based on one-step aptamer identification using a portable Raman spectrometer for rapid and point-of-care detection of SARS-CoV-2 virus in less than 5 minutes[51]

    Label

    method

    Type of virus

    Virus

    species

    SERS

    platform

    Target

    Dynamic

    range

    Methods

    used

    Sample

    solution

    TimeLoDReference
    Label freeRNA virusSARS-CoV-2gold-nanoneedles arrayS-protein

    PCA &

    DA

    saliva urines5 min80 copies/mL36
    Label freeRNA virusSARS-CoV-2SERS-active surfacesS-proteinPBS<1 pg/mL39
    Label freeRNA virusSARS-CoV-2Au nanoplate film/MgF2/Au mirror/glassS-protein1.25×10-6‒4.7×10-3 g/mL

    VTM,

    PCA

    PLS-DA

    saliva

    2.8×

    10-11 g/mL

    40
    Label freeRNA virus

    SARS-CoV-2

    Omicron

    Ag platformssRNAPBS41
    Label freeRNA virus

    SARS-CoV-2

    influenza A H1N1

    metal-insulator-metal nanostructures

    S protein

    HA protein

    PCA

    random

    forest algorithm

    saliva25 min103 copies/mL42
    Label freeRNA virusSARS-CoV-2GAgNPs paper sensorS-proteinsaliva2 min2.4 pg/µL43
    Label freeRNA virusSARS-CoV-2spherical SnS2 structure

    S protein

    RNA

    10‒

    1010 copies/mL

    PCA

    saliva,

    stool, urine, blood, items

    5 min80 copies/mL44
    Label freeRNA virusSARS-CoV-2Cu2O nanoarrayRNA

    100‒

    106 copies/mL

    respiratory swab RNA extracts5 min80 copies/mL45
    Label freeRNA virus

    SARS-CoV-2

    Beta,Delta,Wuhan, Omicron

    Ag INPsS proteinPCA, logistic regression algorithm

    saliva

    nasal swab

    15 min47
    Label freeRNA virus

    SARS-CoV-1

    SARS-CoV-2

    Au nano-pyramidssingle-particle

    LDA, HCA

    Modle training

    saliva5 h46
    Label freeRNA virus

    SARS-CoV-2

    wild-type, Alpha, Delta, Omicron

    3D porous AgMEN

    S protein

    N protein

    1.0 fg/mL‒

    1 mg/mL

    1.0 pg/mL‒

    1 mg/mL

    1.0 pg/mL‒

    1 mg/mL

    saliva

    1.0 fg/mL

    1000 fg/mL

    100 fg/mL

    48
    Label freeRNA virus

    MERS-CoV

    SARS-CoV

    SARS-CoV-2

    HCoVHKU1

    HCoV-OC43

    Ag-coated Si substratesS-proteinMLPPBS49
    4-MBARNA virusSARS-CoV-2Ag-LFAN-protein

    10‒

    1000 ng/mL

    saliva15 min0.03 ng/mL50
    Nile BlueARNA virusSARS-CoV-2

    Magnetic

    beads

    viral particles

    250‒

    10000 TU/μL

    PBS, swab samples5 min124 TU/μL51
    GNPsRNA virusSARS-CoV-2magnetic nanoparticlesS-protein4.1×104 genomes/mLsaliva30 min257 fg/mL52
    4-MBARNA virusSARS-CoV-2Au NPsS-protein

    1 fg/mL‒

    1ng/mL

    10 fg/mL ‒

    10 ng/mL

    PBS

    saliva serum blood

    0.77 fg/mL

    6.07 fg/mL

    7.60 fg/mL

    0.10 pg/mL

    53

    MMC

    DTNB

    TFMBA

    MBA

    RNA virus

    SARS-CoV-2

    Delta,Omicron

    Au-Ag nanobox-based SERS barcodes

    S protein

    N protein

    nasal swab20 virus/μL or 50 pg/mL54
    DTNBRNA virusSARS-CoV-2Ag NRsRNA

    102

    106 copies/mL

    PBS50 min51.38 copies/mL55
    4-MBNRNA virusSARS-CoV-2Au@4MBN@Ag NPsRNA10-6‒10-12MPBS10 min

    7.61×

    10-14 mol

    56
    4-MBARNA virusSARS-CoVM-2Au nanopopcornS-protein

    0‒

    1000 PFU/mL

    PBS15 min10 PFU/mL57
    DTNBRNA virusSARS-CoV-2AuNP-rGO-SWN-protein

    1 fmol‒

    100 amol

    PBS1 fmol58
    Label freeRNA virusSARS-CoV-2Au NPsRNA

    160 fmol‒

    1 nmol

    Colorimetric

    fluorescenc

    PBS40 min395 fmol59
    MGITCRNA virusSARS-CoV-2Au NDsRdRp genesSERS-PCRPBS60
    Label freeRNA virus

    Influenza A

    Influenza B

    Ag NPsviral particlesSVMPBS0.05 µg/mL61
    Label freeRNA virusInfluenza AAg NPsviral particles

    2×105‒2×

    106 VP/mL

    PBS15 min

    105 VP/mL

    62
    Label freeRNA virusInfluenza AAg NPsviral particles

    103‒5×1010 virus

    Particles/mL

    PBS103 particles/mL64
    Label freeRNA virusInfluenza A H5N1IMBSIs@Agviral particlesPBS5.0×106 TCID50/mL65
    Cy3RNA virusInfluenza AAg NPsviral particlesPBS

    10 VP/mL or

    2 VP/mL per probe

    66
    MGITCRNA virus

    Influenza A

    SARS-CoV-2

    Au NPsN-protein

    0‒

    8064 HAU/mL

    50‒

    1000 PFU/mL

    nasopharyngeal samples

    23 HAU/mL

    5.2 PFU/mL

    67
    Label freeRNA virus

    Influenza A

    SARS-CoV-2

    hCoV-229E

    Gold particlesviral particlesAI,RVM,PCAPBS68

    Cy3

    RRX

    4-MBA

    RNA virus

    SARS-CoV-2

    Influenza A

    Au nanopopcorn substrate

    S-Protein

    hemagglutinin

    0.32‒

    200 PFU/ml

    0.13‒

    80.6 HAU/mL

    PBS15 min

    0.62 HAU/mL

    0.78 PFU/mL

    69
    DTNBRNA virus

    influenzaA

    SARS-CoV-2

    RSV

    Fe3O4@Au core–shell MNPsviral antigenthroat swab samples15 min

    85 copies/mL

    8 pg/mL

    8 pg/mL

    70
    4-ATPRNA virus

    influenza A

    influenza B

    SARS-CoV-2

    Au4-ATP@Ag NPsN-proteinPhotothermal effectpharyngeal swab samples<20 min

    31.25 pg/mL 93.75 pg/m:

    31.25 pg/mL

    71
    Label freeRNA virusHIVAu NCsHIV-1 DNAMillipore water72
    Label freeRNA virusHIV(A,B,C,D, CRF02_AG)Ag nanorodsviral particles

    102

    106 copies/mL

    PCAplasma73
    Label freeRNA virusHIV(A,B,C,D)Au sputtered Ag nanorodsviral particlesPCAplasma74
    MoO3-QDsRNA virusHEV,NoVnanogels (NGs)viral particles

    102

    108 copies/mL

    PBS

    6.5 fg/mL

    8.2 fg/mL

    76
    S-agCDsRNA virusNoVPoly(DOP)-MNPs-Ag NCsviral particles

    1 fg/mL‒

    1 ng/mL

    FL-SERPBS5 min10 RNA copies /mL77
    Label freeRNA virusHCVAg NPsviral particlesPLSR, RMSECV, R2serum79
    Label freeRNA virusHCVAg NPsRNAPLSR, PCAserum80
    Label freeRNA virusDENV-2NANOBOXDENV2-NS1PBS83
    Label freeRNA virusDENVAg NRs arrayRNA1 fmol‒10 nmolserum0.49 fmol84
    Label freeRNA virusDENVAu NPsRNAserum1 pg/μL85
    Label freeRNA virusZika virusAg NIsZika antigen5‒1000 ng/mLPBS0.11 ng/mL86
    Label freeRNA virusWNVAu@Ag NPs

    WNV-NS1

    inactivated WNV virions

    PBS

    0.1 ng/mL

    0.2×102 copies/μL

    88
    Label freeRNA virus

    EMCV

    influenza A

    triangular Au nano-cavities arrayvirus particlesPBS

    106 PFU/ mL

    104 PFU/ mL

    106
    4-MBARNA virusSARS-CoV-2DVD

    VLP protein

    S-Protein

    100 pg/mL‒1000 ng/mL

    PBS

    saliva

    20 min

    50 pg/mL

    400 pg/mL

    115
    4-ATPRNA virusSARS-CoV-2Au NPs

    virus particle

    S-Protein

    PBS5 min

    18 Vp/mL

    4 pg/mL

    117
    4-ATPRNA virusSARS-CoV-2

    SERS-CRISPR/

    Cas12a

    SARS-CoV-2 N genenasopharyngeal swab samples40 min1 fmol113
    4-MBARNA virusSARS-CoV-2CRISPR/Cas12a-OVER-SARS-CoV-2SARS-CoV-2 genenasopharyngeal swab samples45 min1.9 copies/mL109
    Cy3RNA virus

    SARS-CoV-2

    influenza A

    RSV

    Si substratesantigensNasal swabs17 min95
    Label free

    RNA virus

    DNA virus

    SARS-CoV-2

    influenza A

    clustered silver nanoparticlesvirus particleLDA

    PBS

    saliva

    10 PFU/test51
    Table 1. Comparison table of RNA viral detection protocols
    Label methodType of virus

    Virus

    species

    SERS

    platform

    Target

    Dynamic

    range

    Methods used

    Sample

    solution

    TimeLoDReference
    FCDNA virusHBVGaN/Au-Ag SERS substrateHBsAg

    0.0125‒

    60 IU/ml

    plasma0.01 IU/mL92
    4-ATPDNA virusHBVAu NPs@4-ATPHBV DNA

    1 pmol‒

    1 nmol

    PCAserum50 min0.67 pM93
    Label freeDNA virusHBVAg NPsHBV DNAPCA, PLS-DABlood94
    Label freeDNA virusMPXVAg@citM1R proteinsPCAserum100 copies/mL96
    DTNBDNA virusMPXVMoS2@Au-AuMPXV antigens

    100‒

    0.01 ng/mL

    colorimetrythroat swab specimens<20 min0.002 ng/mL97
    Label freeDNA virusEBVRBV InfectionPCA, Mann-Whitney U test, IPA, IPKBGlial Cells100

    R6G

    TMB

    DNA virusEBVPS/Au NPsEBV IgG

    10-1

    105 pg/mL

    blood10 min0.045 pg/mL101
    Label freeDNA virusHSV-1,EBVnanoparticlesantigensPCA

    cell

    confluence

    103
    Label freeDNA virusAdenovirustriangular Au nano-cavities arrayvirus particlesPBS106 PFU/mL106
    Cy3DNA virusAdenovirusSi substratesantigensNasal swabs17 min95
    Label freeDNA virusAdenovirus 7clustered silver nanoparticlesvirus particleLDAPBS, saliva10 PFU/test51
    MBNDNA virusHPVCRISPR/Cas-SERS platform

    HPV16/

    18 dsDNA

    6.72×10-12 mol‒6.72×10-7 molserum40 min110
    TMBDNA virusHPV

    CRISPR/dCas9-SERS

    AuNC@SiO2

    HPV 16 pseudovirus genes30 ng‒190 ngH2O111
    4-MBADNA virusASFVCRISPR/Cas12a-SERS platformASFV dsDNA100 nmol‒10 fmolserum2 h10 fmol112
    Table 2. Comparison table of DNA viral detection protocols
    Yi Liu, Nan Wang, Shaohua He, Jun Zhang, Shangyuan Feng, Duo Lin. Research Progress on Epidemic Virus Detection Based on Surface‑Enhanced Raman Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(9): 0907006
    Download Citation