• Acta Optica Sinica
  • Vol. 43, Issue 15, 1511002 (2023)
Zhuo Li, Yanze Gao*, and Jinying Zhang**
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS230756 Cite this Article Set citation alerts
    Zhuo Li, Yanze Gao, Jinying Zhang. Multi-Spectral Complex Infrared Scene Projection Technology[J]. Acta Optica Sinica, 2023, 43(15): 1511002 Copy Citation Text show less
    References

    [1] Li Z, Li P. Review of dynamic infrared scene projection technology[J]. Infrared and Laser Engineering, 35, 283-294(2006).

    [2] Fan Y J, Jin W Q, Zhu L H. Development of dynamic infrared scene projection technique[J]. Infrared Technology, 35, 133-138(2013).

    [3] Li Z, Shi Q F, Wang X et al. Research on low temperature infrared scene generation technology[J]. Air & Space Defense, 3, 1-7(2020).

    [4] McHugh S, Franks G, LaVeigne J. High-temperature MIRAGE XL (LFRA) IRSP system development[J]. Proceedings of SPIE, 10178, 1017809(2017).

    [5] Shin Y B, Kim W Y, Lee H C. Anodic aluminum oxide-based IR emitter for high-speed infrared scene projector[J]. Journal of Microelectromechanical Systems, 28, 1032-1038(2019).

    [6] Franks G, Laveigne J, Danielson T et al. Development of an ultra-high temperature infrared scene projector at Santa Barbara Infrared Inc[J]. Proceedings of SPIE, 9452, 94520W(2015).

    [7] Ma B, Cheng Z X, Zhai H M et al. Development of domestic resistive arrays technology[J]. Infrared and Laser Engineering, 40, 2314-2322, 2327(2011).

    [8] Du H J, Zhao H M, Yu H et al. Research on sparse grid non-uniformity correction technologies for infrared imaging resistor array[J]. Journal of System Simulation, 28, 70-76(2016).

    [9] Tom D, Greg F, Nicholas H et al. Achieving ultra-high temperatures with a resistive emitter array[J]. Proceedings of SPIE, 9820, 98200Z(2016).

    [10] Sparkman K, LaVeigne J, McHugh S et al. Ultrahigh-temperature emitter pixel development for scene projectors[J]. Proceedings of SPIE, 9071, 90711H.

    [11] Christopher J F, Seth C, Stephen T et al. Test pixels for high-temperature infrared scene projection[J]. Proceedings of SPIE, 9452, 94520X(2015).

    [12] Sparkman K, LaVeigne J, McHugh S et al. Scalable emitter array development for infrared scene projector systems[J]. Proceedings of SPIE, 9071, 90711I(2014).

    [13] Xu Y C, Chen J, Liao S Y[M]. Development history and current situation of resistor array technology at home and abroad(2022).

    [14] Zhao S Q, Wu G S, Liu X N et al. 256 × 256 unit element MOS minute resistance array dynamic scene producing device[J]. Aero Weaponry, 22, 40-45(2015).

    [15] Zhang J C, Liao S Y, Zhang Z Y et al. Real-time improvement for resistor array nonuniformity correction[J]. Infrared Technology, 37, 921-925(2015).

    [16] Zhang K, Ma B, Huang Y et al. Method of 256-resolution resistor array performance testing and non-linearity correction[J]. Infrared and Laser Engineering, 41, 2921-2926(2012).

    [17] Hao Y, Yang S H, Ling C et al. Broadband visible to mid-infrared aluminum-black absorbers and the aging behavior[J]. Infrared Physics & Technology, 115, 103735(2021).

    [18] Zhao Q, Li Z, Wang X et al. Spatial resolution of infrared scene projector chip with periodical microstructure[J]. Acta Optica Sinica, 40, 1031001(2020).

    [19] Bly V T. Passive visible to infrared transducer for dynamic infrared image simulation[J]. Proceedings of SPIE, 0226, 140-148(1980).

    [20] Zhou L, Li Z, Li D F et al. Large scale array visible-infrared converter based on free-standing flexible composites[C], 2527-2530(2019).

    [21] Zhou L, Li Z, Li D F et al. A soft composite thermal emitter with high efficiency in broadband infrared spectrum[C](2019).

    [22] Li D F, Zhang J Y, Shi Q F et al. A robust infrared transducer of an ultra-large-scale array[J]. Sensors, 20, 6807(2020).

    [23] Li D F, Zhang J Y, Shi Q F et al. A robust infrared transducer beyond 2 K × 2 K pixels[C], 923-926(2021).

    [24] Zhang J Y, Li D F, Li Z et al. A photothermal transducer based on 3D thermal management[C], 601-604(2021).

    [25] Li D F, Zhang J Y, Xu J S et al. Ultra-large pixel array photothermal transducer and its thermal performance prediction strategy[C], 1147-1150(2023).

    [26] Zhao Q, Li Z, Li D F et al. Tuning the thermophysical property of polyimide thin films by in-plane microstructure design[J]. Optical Technique, 46, 301-309(2020).

    [27] Liu D, Zhou L, Wang X et al. The thermodynamic properties of the MEMS infrared transducer[J]. Optical Technique, 45, 502-508(2019).

    [28] Li D F, Zhang J Y, Xu J S et al. Single-step fabricated disordered pyramidal nanostructures for large-scale broadband visible light absorber with high-temperature stability[J]. Applied Surface Science, 601, 154279(2022).

    [29] Zhou L, Li Z, Shi N et al. Dynamic infrared scene simulation technology based on MEMS technology[J]. Air & Space Defense, 1, 50-55(2018).

    [30] Zhou L, Li Z, Zhang J Y et al. Thin layer broadband porous chromium black absorber fabricated through wet-etching process[J]. RSC Advances, 9, 14649-14656(2019).

    [31] Zhou L, Wang X, Yang S H et al. A self-suspended MEMS film convertor for dual-band infrared scene projection[J]. Infrared Physics & Technology, 105, 103231(2020).

    [32] Zhou L, Wang X, Zhang J Y et al. Self-suspended carbon nanotube/polyimide composite film with improved photothermal properties[J]. Journal of Applied Physics, 127, 205103(2020).

    [33] Shi Q F, Gao Y Z, Li Z et al. High-dynamic-range infrared radiometer based on chaos detection method[J]. Infrared Physics & Technology, 116, 103787(2021).

    [34] Shi Q F, Gao Y Z, Zhang X et al. Cryogenic background infrared scene generation method based on a light-driven blackbody micro cavity array[J]. Infrared Physics & Technology, 117, 103841(2021).

    [35] Zhang S C, Li Z, Gao Y Z et al. Design of optical system for infrared scene projection in cryogenic environment[J]. Acta Optica Sinica, 41, 1422003(2021).

    [36] Zhang X L, Li Z, Gao Y Z et al. Light-driven technology based on MEMS infrared conversion films[J]. Acta Optica Sinica, 41, 251-259(2021).

    [37] Zhang J Y, Li D F, Li Z et al. Demonstration of thermal modulation using nanoscale and microscale structures for ultralarge pixel array photothermal transducers[J]. Microsystems & Nanoengineering, 7, 102(2021).

    [38] Hao Y, Yang S H, Ling C et al. Ultralarge pixel array photothermal film based on 3D self-suspended microbridge structure for infrared scene projection[J]. Small, 2208262(2023).

    [39] Beasley D B, Bender M, Crosby J et al. Advancements in the micromirror array projector technology Ⅱ[J]. Proceedings of SPIE, 5785, 68-79(2005).

    [40] Chen J H, Zhu M, Huang D T. Dynamic infrared scene projection technology based upon digital micromirror device[J]. Chinese Optics, 3, 325-336(2010).

    [41] Zhang Y X, Wang Y P, Hou J Y. Circuit and optical system design for high frame rate DMD infrared scene simulation equipment[J]. Infrared and Laser Engineering, 46, 404003(2017).

    [42] Beasley D B, Bender M, Crosby J et al. Dynamic infrared scene projectors based upon the DMD[J]. Proceedings of SPIE, 7210, 72100I(2009).

    [43] Dupuis J R, Mansur D J, Vaillancourt R et al. Two-band DMD-based infrared scene simulator[J]. Proceedings of SPIE, 7210, 72100J(2009).

    [44] Pang G N. Key technology on DMD based infrared scene simulation[D](2018).

    [45] Zhang N. Research on large dynamic range infrared simulation system based on DMD[D](2016).

    [46] Pan Y, Xu X P, Qiao Y. Opto-mechanical structural design for two-DMD infrared dual-band scene simulator[J]. Chinese Journal of Scientific Instrument, 38, 2994-3002(2017).

    [47] Pan Y, Xu X P, Qiao Y. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion[J]. Infrared Physics & Technology, 91, 90-100(2018).

    [48] Gu H S, Wang L Y, Li G X. Optical design of MW/LW infrared dual-bands scene simulation system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 45, 41-47(2022).

    [49] Xie F, Zheng G F, Du B L et al. Design and application of DMD-based infrared dynamic scene projector[J]. Proceedings of SPIE, 11455, 114558B(2020).

    [50] Shi M F. Research on infrared target simulation device[D](2022).

    [51] Xu J L, Li B Y, Liu Y et al. Gray scale modulation and synchronization of infrared scene projector based on DMD[J]. Infrared and Laser Engineering, 43, 1062-1067(2014).

    [52] Zhang K, Huang Y, Sun L et al. Dynamic infrared scene simulation using grayscale modulation imaging[J]. Infrared and Laser Engineering, 41, 2283-2287(2012).

    [53] Han Q, Zhang J Z, Wang J A et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 55, 8016-8021(2016).

    [54] Ewing T, Buck J, Serati S et al. Liquid crystal on silicon (LCOS) devices and their application to scene projection[J]. Proceedings of SPIE, 8356, 83560A(2012).

    [55] Zhang Z C, You Z, Chu D P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices[J]. Light: Science & Applications, 3, e213(2014).

    [56] Ewing T, Folks W. Liquid crystal on silicon infrared scene projectors[J]. Proceedings of SPIE, 5785, 36-45(2005).

    [57] Stockley J, Bauchert K, Linnenberger A et al. Liquid crystal on silicon spatial light modulator for infrared scene generation[J]. Proceedings of SPIE, 7301, 73010H(2009).

    [58] Jack R L, Kipp B. Testing a new generation 512 × 512, >200 Hz capable, liquid crystal on silicon (LCoS) with ferro-electric liquid crystal, IR scene projector[J]. Proceedings of SPIE, 6208, 62080L(2006).

    [59] Lippert J R, Wei H, Yu H P et al. Record breaking high-apparent temperature capability of LCoS-based infrared scene projectors[J]. Proceedings of SPIE, 7663, 76630S(2010).

    [60] Sun C L. Research on liquid crystal on silicon spatial light modulator and liquid crystal filter[D](2019).

    [61] Vitiello M S, Scalari G, Williams B et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 23, 5167-5182(2015).

    [62] Ricker R J, Provence S R, Norton D T et al. Broadband mid-infrared superlattice light-emitting diodes[J]. Journal of Applied Physics, 121, 185701(2017).

    [63] Meriggi L, Steer M J, Ding Y et al. Development of mid-infrared light-emitting diodes for low-power optical gas sensors[C], 180-183(2015).

    [64] Abell J, Kim C S, Bewley W W et al. Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature[J]. Applied Physics Letters, 104, 261103(2014).

    [65] Das N C. Performance comparison of top- and bottom-emitting long wave infrared light emitting diode devices[J]. Journal of Electronic Materials, 38, 2329-2334(2009).

    [66] Das N C, Olver K, Towner F. High emissive power MWIR LED array[J]. Solid-State Electronics, 49, 1422-1427(2005).

    [67] Canedy C L, Bewley W W, Tomasulo S et al. Interband cascade LEDs grown on silicon[C](2022).

    [68] Barakhshan P. End to end testing and non-uniformity detection and correction of superlattice light emitting diodes infrared scene projectors[D](2020).

    [69] Li J, Jin W. A new dynamic infrared scene generation system based on diode array[J]. Optoelectronic Technology, 36, 65-69(2016).

    [70] Das N C, Kiamilev F, Prineas J P et al. Performance of 64 × 64 MWIR super lattice light-emitting diode (SLED) array for IR scene generation[J]. Proceedings of SPIE, 6942, 69420I(2008).

    [71] Norton D T, Olesberg J T, McGee R T et al. 512×512 individually addressable MWIR LED arrays based on type-Ⅱ InAs/GaSb superlattices[J]. IEEE Journal of Quantum Electronics, 49, 753-759(2013).

    [72] Russell J R, Sydney P, Lee M M et al. 512 × 512 array of dual-color InAs/GaSb superlattice light-emitting diodes[J]. Proceedings of SPIE, 10124, 101241L(2017).

    [73] Ejzak G A, Dickason J, Marks J A et al. 512 × 512, 100 Hz mid-wave infrared LED microdisplay system[J]. Journal of Display Technology, 12, 1139-1144(2016).

    [74] Ahmed H, Deputy A, Singh J et al. Transitioning the worlds first 1K × 1K Infrared LED Scene Projector Systems from Research and Development (R&D) to Production Level[C](2021).

    [75] Hernandez M, Marks J, Koerperick E et al. Improving density and efficiency of infrared projectors[J]. IEEE Photonics Journal, 11, 7000910(2019).

    [76] Browning T, Jackson C, Houser R et al. A modular platform for rapid IRSP development[J]. IEEE Photonics Journal, 11, 7001010(2019).

    [77] Ting D Z, Soibel A, Khoshakhlagh A et al. InAs/InAsSb type-II strained layer superlattice barrier infrared detectors[C](2019).

    [78] Wu L C, Song Z T, Zhou X L et al. Study of phase change materials for phase change random access memory[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 46, 126-134(2016).

    [79] Wang C G, Zhang G J. Sulfur-based phase change thin film material for optical communication[J]. China Science and Technology Information, 133-136(2022).

    [80] Ginn J, Warren A P, Shrekenhamer D et al. Phase-change metamaterial infrared scene projector[C](2022).

    [81] Malyutenko V K, Bogatyrenko V V, Malyutenko O Y. Bulk silicon as photonic dynamic infrared scene projector[J]. Applied Physics Letters, 102, 131109(2013).

    [82] Zhao Y J, Gao J B. Light down-conversion mechanism of infrared semiconductor[J]. Laser & Infrared, 37, 747-749, 755(2007).

    [83] Yi T, Wang S H, Li Y H et al. Photoinduced opaque effect model for light down-converter of dynamic infrared scene projection[J]. Optical Engineering, 58, 127101(2019).

    [84] Muhowski A J, Kamboj A, Briggs A F et al. Cascaded InGaSb quantum dot mid-infrared LEDs[J]. Journal of Applied Physics, 131, 043105(2022).

    [85] Yoon Y J, Biesold G, Liang S A et al. Stable infrared-emitting chemical composition gradient quantum dots for down-convertors and photodetectors[J]. ACS Applied Nano Materials, 3, 11335-11343(2020).

    [86] Kang Z T, Yoon Y J, James J C et al. Quantum dots for multi-band infrared scene projector[C](2018).

    [87] Rusche G. IR emitting CRT[J]. Proceedings of SPIE, 0765, 85-88(1987).

    [88] Jin H S, Lin Y S, Wang S Y et al. Performance and application analysis of 8- to 12-µm IR-CRT scene simulator[J]. Physica: A-statistical Mechanics and Its Applications, 4223, 169-172(2000).

    [89] Qiao J W, Zhou G J, Zhou Y Y et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nature Communications, 10, 5267(2019).

    [90] Liu S, Wang Z, Cai H et al. Highly efficient near-infrared phosphor LaMgGa11O19:Cr3+[J]. Inorganic Chemistry Frontiers, 7, 1467-1473(2020).

    [91] Menkara H, Kang Z T, James J C. IR scene projection by optical down-conversion[C](2021).

    [92] Van L C, Van Le H, Nguyen N D et al. Modeling of lead-bismuth gallate glass ultra-flatted normal dispersion photonic crystal fiber infiltrated with tetrachloroethylene for high coherence mid-infrared supercontinuum generation[J]. Laser Physics, 32, 055102(2022).

    [93] Pakarzadeh H, Sharif V, Vigneswaran D et al. Graphene-assisted tunable D-shaped photonic crystal fiber sensor in the visible and IR regions[J]. Journal of the Optical Society of America B, 39, 1490-1496(2022).

    [94] Han J, Wei C, Chi H et al. Theoretical simulations of the soliton self-frequency shift of mid-infrared femtosecond pulses in step-index tellurite optical fibers: broadband tunability and high efficiency[J]. OSA Continuum, 2, 1851-1862(2019).

    [95] Li R F, Guo J, Qiao Y et al. Properties of three-dimensional photonic crystals as infrared stealth materials[J]. Acta Armamentarii, 43, 1892-1901(2022).

    [96] Wilson J, Burckel B, Caulfield J et al. Photonic crystal scene projector development[J]. Proceedings of SPIE, 7663, 766309(2010).

    [97] Wilson J, Burckel B, Caulfield J et al. Development of photonic crystal based large format IR scene projection technology[J]. Proceedings of SPIE, 8356, 835609(2012).

    [98] Tian Y, Li Q, Zhang L et al. One-dimensional photonic crystal infrared space light modulator imagination[J]. Infrared and Laser Engineering, 41, 2333-2338(2012).

    [99] Yu H, Guo L, Wang S et al. Application of LC and LCoS in multispectral polarized scene projector (MPSP)[J]. Proceedings of SPIE, 10125, 1012519(2017).

    [100] Linnenberger A, Masterson H, Rice J et al. Liquid-crystal-based hyperspectral image projector[J]. Proceedings of SPIE, 7695, 76951Z(2010).

    [101] Laveigne J, Franks G, Prewarski M. A two-color 1024×1024 dynamic infrared scene projection system[J]. Proceedings of SPIE, 8707, 870703(2013).

    [102] McHugh S, Franks G, LaVeigne J. High-temperature MIRAGE XL (LFRA) IRSP system development[J]. Proceedings of SPIE, 10178, 1017809(2017).

    [103] Dupuis J R, Mansur D J, Vaillancourt R et al. Two-band DMD-based infrared scene simulator[J]. Proceedings of SPIE, 7301, 73010E(2009).

    [104] Dupuis J R, Mansur D. Contrast analysis for DMD-based IR scene projector[J]. Proceedings of SPIE, 8015, 801505(2011).

    [105] Pan Y, Xu X P, Qiao Y. Design of optical engine for zoom infrared two-band scene simulator based on dual-DMD[J]. Journal of Infrared Millimeter Waves, 37, 437-444(2018).

    [106] Tian Y, Xu R, Shi R et al. IR/MW multilayered dielectric plate beam combiner design, optimization, and evaluation[J]. Applied Optics, 52, 288-297(2013).

    [107] Tian Y, Lü L J, Jiang L W et al. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis[J]. Applied Optics, 52, 5411-5419(2013).

    Zhuo Li, Yanze Gao, Jinying Zhang. Multi-Spectral Complex Infrared Scene Projection Technology[J]. Acta Optica Sinica, 2023, 43(15): 1511002
    Download Citation