• Photonics Research
  • Vol. 9, Issue 7, 1272 (2021)
Bin Zhang1、4、†,*, Pingyang Zeng1、†, Zelin Yang1、†, Di Xia1、†, Jiaxin Zhao1, Yaodong Sun1, Yufei Huang1, Jingcui Song1, Jingshun Pan1, Huanjie Cheng1, Dukyong Choi2, and Zhaohui Li1、3、5、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Technologies, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Laser Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • 4e-mail: zhangbin5@mail.sysu.edu.cn
  • 5e-mail: lzhh88@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.422435 Cite this Article Set citation alerts
    Bin Zhang, Pingyang Zeng, Zelin Yang, Di Xia, Jiaxin Zhao, Yaodong Sun, Yufei Huang, Jingcui Song, Jingshun Pan, Huanjie Cheng, Dukyong Choi, Zhaohui Li, "On-chip chalcogenide microresonators with low-threshold parametric oscillation," Photonics Res. 9, 1272 (2021) Copy Citation Text show less
    References

    [1] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photon., 5, 1943-1950(2018).

    [2] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [3] M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, R. Morandotti. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).

    [4] A. V. Muraviev, V. O. Smolski, Z. E. Loparo, K. L. Vodopyanov. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).

    [5] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [6] W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [7] X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, A. M. Armani. Low-threshold parametric oscillation in organically modified microcavities. Sci. Adv., 4, eaao4507(2018).

    [8] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [9] H. T. Lin, Y. Song, Y. Z. Huang, D. Kita, S. Deckoff-Jones, K. Q. Wang, L. Li, J. Y. Li, H. Y. Zheng, Z. Q. Luo, H. Z. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, J. J. Hu. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11, 798-805(2017).

    [10] C. R. Petersen, I. Møller, , B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [11] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643-649(2014).

    [12] D.-G. Kim, S. Han, J. Hwang, I. H. Do, D. Jeong, J.-H. Lim, Y.-H. Lee, M. Choi, Y.-H. Lee, D.-Y. Choi, H. Lee. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun., 11, 5933(2020).

    [13] B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, B. J. Eggleton. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).

    [14] H. G. Winful, I. V. Kabakova, B. J. Eggleton. Model for distributed feedback Brillouin lasers. Opt. Express, 21, 16191-16199(2013).

    [15] T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, B. J. Eggleton. Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing. Sci. Rep., 4, 5032(2014).

    [16] S. Xing, D. Grassani, S. Kharitonov, L. Brilland, C. Caillaud, J. Trolès, C.-S. Brès. Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica, 4, 643-648(2017).

    [17] M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, R. Vallee. 3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett., 39, 2052-2055(2014).

    [18] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [19] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [20] D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, A. L. Gaeta. Silicon-waveguide-coupled high-Q chalcogenide microspheres. Opt. Express, 17, 5998-6003(2009).

    [21] D.-Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, B. Luther-Davies. Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication. Phys. Procedia, 48, 196-205(2013).

    [22] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [23] A. El-Sebaii, S. A. Khan, F. Al-Marzouki, A. Faidah, A. Al-Ghamdi. Role of heat treatment on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J. Lumin., 132, 2082-2087(2012).

    [24] B. J. Kim, J. H. Kim, S. H. Hwang, A. S. Budiman, H. Y. Son, K. Y. Byun, N. Tamura, M. Kunz, D. I. Kim, Y. C. Joo. Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron. Mater., 41, 712-719(2012).

    [25] J. Zhu, M. Zohrabi, K. Bae, T. M. Horning, M. B. Grayson, W. Park, J. T. Gopinath. Nonlinear characterization of silica and chalcogenide microresonators. Optica, 6, 716-722(2019).

    [26] Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J. Hu. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Opt. Lett., 41, 3090-3093(2016).

    [27] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [28] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [29] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [30] M. R. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, B. Eggleton. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express, 16, 14938-14944(2008).

    [31] B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, B. Luther-Davies, P. Lucas. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. J. Am. Ceram. Soc., 98, 1389-1392(2015).

    [32] J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, A. Melloni. Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength. Opt. Lett., 35, 874-876(2010).

    [33] Y. Zhu, L. Wan, Z. Chen, Z. Yang, D. Xia, P. Zeng, J. Song, J. Pan, Y. Feng, M. Zhang. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators. J. Lightwave Technol., 38, 4817-4823(2020).

    [34] J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, A. F. Abouraddy. Structured spheres generated by an in-fibre fluid instability. Nature, 487, 463-467(2012).

    [35] M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, M. Jazayerifar. Fiber optical parametric amplifiers in optical communication systems. Laser Photon. Rev., 9, 50-74(2015).

    [36] S. Madden, D.-Y. Choi, D. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. Pelusi, B. Eggleton. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express, 15, 14414-14421(2007).

    [37] M. J. Collins, A. S. Clark, J. He, D.-Y. Choi, R. J. Williams, A. C. Judge, S. J. Madden, M. J. Withford, M. Steel, B. Luther-Davies, C. L. Xiong, B. J. Eggleton. Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. Opt. Lett., 37, 3393-3395(2012).

    [38] X. Gai, S. Madden, D. Y. Choi, D. Bulla, B. Luther-Davies. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm. Opt. Express, 18, 18866-18874(2010).

    [39] Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photon. Res., 6, 506-510(2018).

    [40] B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, Y. Xu. High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. J. Am. Ceram. Soc., 99, 2565-2568(2016).

    [41] Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, B. Luther-Davies. 1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt. Lett., 40, 1081-1084(2015).

    Bin Zhang, Pingyang Zeng, Zelin Yang, Di Xia, Jiaxin Zhao, Yaodong Sun, Yufei Huang, Jingcui Song, Jingshun Pan, Huanjie Cheng, Dukyong Choi, Zhaohui Li, "On-chip chalcogenide microresonators with low-threshold parametric oscillation," Photonics Res. 9, 1272 (2021)
    Download Citation