• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 100002 (2021)
Song Zhaoqi1、2, Zhu Jingguo1、*, Xie Tianpeng1、2, Li Feng1, Jiang Chenghao1, Guo Wenju1, Wang Chunxiao1, and Jiang Yan1
Author Affiliations
  • 1Institute of Mircroelectronics, Chinese Academy of Sciences, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.0100002 Cite this Article Set citation alerts
    Song Zhaoqi, Zhu Jingguo, Xie Tianpeng, Li Feng, Jiang Chenghao, Guo Wenju, Wang Chunxiao, Jiang Yan. Research Progress on Security LiDAR[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100002 Copy Citation Text show less
    Application scenarios. (a) Perimeter protection[9]; (b) industrial monitoring[10]; (c) intrusion warning[11]; (d) cultural relic protection[12]
    Fig. 1. Application scenarios. (a) Perimeter protection[9]; (b) industrial monitoring[10]; (c) intrusion warning[11]; (d) cultural relic protection[12]
    Drones equipped with security LiDAR for detecting intrusion target in forest scenario[15]
    Fig. 2. Drones equipped with security LiDAR for detecting intrusion target in forest scenario[15]
    Working principle of traditional mechanical LiDAR[21]
    Fig. 6. Working principle of traditional mechanical LiDAR[21]
    SICK safety laser scanner series[22]
    Fig. 7. SICK safety laser scanner series[22]
    Schematic of MEMS. (a) Working principle of MEMS LiDAR[24]; (b) MEMS scanning mirror[25]
    Fig. 8. Schematic of MEMS. (a) Working principle of MEMS LiDAR[24]; (b) MEMS scanning mirror[25]
    Working principle of Flash LiDAR[21]
    Fig. 9. Working principle of Flash LiDAR[21]
    Working scenario and experimental results of Flash LiDAR[31]. (a) Experimental setup with real-time tracking on PC and Flash LiDAR on pan-tilt head; (b) point cloud of scenario; (c) intensity view of scenario with person marked center; (d) range view of scenario with person marked center
    Fig. 10. Working scenario and experimental results of Flash LiDAR[31]. (a) Experimental setup with real-time tracking on PC and Flash LiDAR on pan-tilt head; (b) point cloud of scenario; (c) intensity view of scenario with person marked center; (d) range view of scenario with person marked center
    Working principle of OPA[33]
    Fig. 11. Working principle of OPA[33]
    Working principle of Quanergy S3 LiDAR[34]
    Fig. 12. Working principle of Quanergy S3 LiDAR[34]
    Relationship between maximum permissible exposure and wavelength[35]
    Fig. 13. Relationship between maximum permissible exposure and wavelength[35]
    Miniaturized LiDAR. (a) RealSense L515[40]; (b) SICK safety LiDAR nanoScan3[41]
    Fig. 14. Miniaturized LiDAR. (a) RealSense L515[40]; (b) SICK safety LiDAR nanoScan3[41]
    Micrograph of fully differential main amplifier chip[42]
    Fig. 15. Micrograph of fully differential main amplifier chip[42]
    Working flow chart of FMCW LiDAR[44]
    Fig. 16. Working flow chart of FMCW LiDAR[44]
    Working principle of coherent LiDAR[45]. (a) Schematic of solid-state LiDAR system with transmittable and receivable optical phased array; (b) chip containing LiDAR system on top of dime
    Fig. 17. Working principle of coherent LiDAR[45]. (a) Schematic of solid-state LiDAR system with transmittable and receivable optical phased array; (b) chip containing LiDAR system on top of dime
    Equipment diagram of security system[50]. (a) Optosafe Opto-Q-Guard system; (b) electronic equipment monitoring
    Fig. 18. Equipment diagram of security system[50]. (a) Optosafe Opto-Q-Guard system; (b) electronic equipment monitoring
    Security robots. (a) Intelligent inspection robot equipped with LiDAR[52]; (b) Orby-One tracking robot[53]
    Fig. 19. Security robots. (a) Intelligent inspection robot equipped with LiDAR[52]; (b) Orby-One tracking robot[53]
    Security scenarioDectect object
    Perimeter protectionPeople, animal, and weapon
    Traffic controlPeople, car, animal, and rolling stone
    Cultural relic protectionPeople
    Airborne intrusion warningUAV, bird, and people
    Table 1. Detecting targets in different security scenarios
    CompanyProduct modelAccuracy /mmAngular resolution /(°)Mass /kgSize /(mm×mm×mm)Cost /USD
    RieglVZ-400i50.0007 (horizontal) and0.0005 (vertical)9.7206×206×308Over 105
    OptechGalaxy T2000827340×340×250Over 106
    LeicaScanStation P5030.002212.5238×358×395115240
    TrimbleTrimble GX70.003 (horizontal) and0.004 (vertical)13323×343×404183300
    Table 2. Product indicators of traditional security LiDAR
    CompanyTechnological regimeProduct modelMaximum measurement distance /mField of view /(°)Mass /kgWavelength /nmCost /USD
    SICKMechanicaloutdoorScan342751.158504834
    nanoScan332750.67905
    TiM-S252700.25850
    S30032701.209052437
    S300071903.309054500
    TiM1xx102000.09850782
    HOKUYOMechanicalUAM-05LP202700.809051200
    UTM-30LX602700.379054800
    UXM-30LX301900.809054800
    UST-10LX302700.139051600
    YVT-35LX35 (horizontal) and 14(vertical)210(horizontal) and40(vertical)0.659057500
    QuanergyMechanicalM8300@ρ=80%360(horizontal) and20(vertical)1.09055000
    OPAS3-1150@ρ=80%120(horizontal) and10(vertical)0.5905250
    OusterFlashOS0-325595(vertical)0.4458506000
    OS1-3212045(vertical)0.4458508000
    OS2-3224025(vertical)0.93085016000
    Table 3. Product indicators of foreign mainstream security LiDAR[16-18]
    CompanyTechnological regimeProduct modelMaximum measurement distance /mField of view /(°)Mass /kgWavelength /nmCost /USD
    Galaxy electronicMechanicalGL-11xx30@ρ=10%2701.80905
    GL-21xx20@ρ=10%1801.00905
    GL-41xx260@ρ=10%10014.00905
    GL-52xx10@ρ=10%3000.75905
    LiShen inelligent systemMechanicalCX16-151C150@ρ=30%360(horizontal) and20(vertical)0.879052800
    CX32-151A150@ρ=30%360(horizontal) and31(vertical)1.509058500
    MEMSLS20C200120(horizontal) and20(vertical)9051500
    LS21AOver 20060 (horizontal) and20(vertical)15501500
    BenewakeMechanicalTF0222@ρ=90%3.00.052905162
    TF03180@ρ=90%0.50.077905229
    FlashCE03-D28@ρ=90%240.00.3568501500
    LorentechFlashIT series80@ρ=80%60(horizontal) and45(vertical)0.62850
    IG series40@ρ=80%60(horizontal) and30(vertical)0.38850
    IM series20@ρ=80%30(horizontal) and20(vertical)0.30850
    Table 4. Product indicators of domestic mainstream security LiDAR[19]
    SchemeMeasurement distanceAccuracyAnti-interferencePowerCost
    TOFBestWorstWorstWorstHigh
    AMCWWorstBetterBetterBetterMedium
    FMCWBetterBestBestBestHigh
    Table 5. Comparison of three ranging schemes
    Scanning schemeMeasurement distanceAccuracyCostSizeTechnological readiness levelStability
    MechanicalBetterBetterHighWorstBestWorst
    MEMSWorstWorstMediumBetterBetterBetter
    FlashWorstWorstLowBetterBetterBetter
    OPAWorstWorstLowBetterWorst-
    Table 6. Comparison of four scanning schemes
    WavelengthAnti-interferenceEye- safetyHype cycleCost
    850 nmBetterWorstWorstBetter
    950 nmBetterWorstBetterBetter
    1550 nmWorstBetterWorstWorst
    Table 7. Comparison of three light sources for LiDAR
    Song Zhaoqi, Zhu Jingguo, Xie Tianpeng, Li Feng, Jiang Chenghao, Guo Wenju, Wang Chunxiao, Jiang Yan. Research Progress on Security LiDAR[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100002
    Download Citation