• Photonics Research
  • Vol. 12, Issue 5, 1004 (2024)
Hongxin Zeng1、2、†, Xuan Cong1、†, Shiqi Wang1, Sen Gong1、2, Lin Huang1, Lan Wang1、2, Huajie Liang3, Feng Lan1、2, Haoyi Cao1, Zheng Wang1, Weipeng Wang1, Shixiong Liang4, Zhihong Feng4, Ziqiang Yang1、2, Yaxin Zhang1、2、6、*, and Tie Jun Cui2、5、7、*
Author Affiliations
  • 1Terahertz Communication Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611730, China
  • 2Zhangjiang Laboratory, Shanghai 201210, China
  • 3Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313098, China
  • 4National Key Laboratory of Solid-State Microwave Devices and Circuits, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
  • 5Institute of Electromagnetic Space and State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 6e-mail: zhangyaxin@uestc.edu.cn
  • 7e-mail: tjcui@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.517350 Cite this Article Set citation alerts
    Hongxin Zeng, Xuan Cong, Shiqi Wang, Sen Gong, Lin Huang, Lan Wang, Huajie Liang, Feng Lan, Haoyi Cao, Zheng Wang, Weipeng Wang, Shixiong Liang, Zhihong Feng, Ziqiang Yang, Yaxin Zhang, Tie Jun Cui. Ultrafast modulable 2DEG Huygens metasurface[J]. Photonics Research, 2024, 12(5): 1004 Copy Citation Text show less
    References

    [1] S. Sun, Q. He, J. Hao. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photon., 11, 380-479(2019).

    [2] A. Nemati, Q. Wang, M. Hong. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [3] F. Ding, Y. Yang, R. A. Deshpande. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 7, 1129-1156(2018).

    [4] Y. Yang, Y. Bi, L. Peng. Veselago lensing with Weyl metamaterials. Optica, 8, 249-254(2021).

    [5] X. Cong, L. Zhang, J. Li. Integration of ultrathin metasurfaces with a lens for efficient polarization division multiplexing. Adv. Opt. Mater., 7, 1900116(2019).

    [6] L. Li, P. Zhang, F. Cheng. An optically transparent near-field focusing metasurface. IEEE Trans. Microwave Theory Techn., 69, 2015-2027(2021).

    [7] M. Khorasaninejad, W. T. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [8] H. Ma, J. Niu, B. Gao. Tunable metasurface based on plasmonic quasi bound state in the continuum driven by metallic quantum wells. Adv. Opt. Mater., 11, 2202584(2023).

    [9] M. Chang, J. Han, Y. Li. Self-powered polarization-reconfigurable rectenna for wireless power transfer system. IEEE Trans. Antennas Propag., 71, 6297-6307(2023).

    [10] P. Xu, H. Liu, R. Li. Highly integrated multifunctional coding metasurface in full‐space based on independent control of transmission and reflection. Adv. Opt. Mater., 12, 2203117(2023).

    [11] N. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [12] Z. Qin, Y. Li, H. Wang. Polarization meta-converter for dynamic polarization states shifting with broadband characteristic. Opt. Express, 30, 20014-20025(2022).

    [13] K. Liu, G. Wang, T. Cai. Dual-band transmissive circular polarization generator with high angular stability. Opt. Express, 28, 14995-15005(2020).

    [14] X. Huang, H. Yang, D. Zhang. Ultrathin dual-band metasurface polarization converter. IEEE Trans. Antennas Propag., 67, 4636-4641(2019).

    [15] X. G. Zhang, W. X. Jiang, H. L. Jiang. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).

    [16] Y. Che, X. Wang, Q. Song. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 9, 4407-4431(2020).

    [17] L. Wang, Y. Zhang, X. Guo. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials, 9, 965(2019).

    [18] J. Wang, B. Xiong, R. Peng. Flexible phase change materials for electrically‐tuned active absorbers. Small, 17, 2101282(2021).

    [19] Y. Li, J. Lin, H. Guo. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [20] Y. Liu, R. Zhong, J. Huang. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt. Express, 27, 7393-7404(2019).

    [21] A. Pitilakis, O. Tsilipakos, F. Liu. A multi-functional reconfigurable metasurface: electromagnetic design accounting for fabrication aspects. IEEE Trans. Antennas Propag., 69, 1440-1454(2021).

    [22] C. Molero, A. Palomares-Caballero, A. Alex-Amor. Metamaterial-based reconfigurable intelligent surface: 3D meta-atoms controlled by graphene structures. IEEE Commun. Mag., 59, 42-48(2021).

    [23] W. Tang, J. Y. Dai, M. Z. Chen. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J. Sel. Areas Commun., 38, 2683-2699(2020).

    [24] F. Liu, O. Tsilipakos, A. Pitilakis. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions. Phys. Rev. Appl., 11, 044024(2019).

    [25] A. Forouzmand, H. Mosallaei. A tunable semiconductor‐based transmissive metasurface: dynamic phase control with high transmission level. Laser Photon. Rev., 14, 1900353(2020).

    [26] A. Forouzmand, M. M. Salary, G. Kafaie Shirmanesh. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide. Nanophotonics, 8, 415-427(2019).

    [27] Y. Zhang, Y. Zhao, S. Liang. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface. Nanophotonics, 8, 153-170(2018).

    [28] B. Dong, C. Zhang, G. Guo. BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics, 11, 2075-2083(2022).

    [29] L. Ye, X. Chen, C. Zhu. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide. Opt. Express, 28, 33948-33958(2020).

    [30] J. Lou, J. Liang, Y. Yu. Silicon‐based terahertz meta‐devices for electrical modulation of Fano resonance and transmission amplitude. Adv. Opt. Mater., 8, 2000449(2020).

    [31] S. Wei, G. Cao, H. Lin. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769-4776(2021).

    [32] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912-6920(2020).

    [33] E. Klopfer, M. Lawrence, D. R. Barton. Dynamic focusing with high-quality-factor metalenses. Nano Lett., 20, 5127-5132(2020).

    [34] J. Y. Dai, J. Yang, W. Tang. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Appl. Phys. Rev., 7, 041408(2020).

    [35] J. Y. Dai, W. Tang, M. Wang. Simultaneous in situ direction finding and field manipulation based on space-time-coding digital metasurface. IEEE Trans. Antennas Propag., 70, 4774-4783(2022).

    [36] J. Y. Dai, L. X. Yang, J. C. Ke. High‐efficiency synthesizer for spatial waves based on space‐time‐coding digital metasurface. Laser Photon. Rev., 14, 1900133(2020).

    [37] X. Zhu, C. Qian, Y. Jia. Realization of index modulation with intelligent spatiotemporal metasurfaces. Adv. Intell. Syst., 5, 2300065(2023).

    [38] Q. Yang, S. Kruk, Y. Xu. Mie‐resonant membrane Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1906851(2020).

    [39] R. Zhao, Z. Zhu, G. Dong. High-efficiency Huygens’ metasurface for terahertz wave manipulation. Opt. Lett., 44, 3482-3485(2019).

    [40] C. Guan, Z. Wang, X. Ding. Coding Huygens’ metasurface for enhanced quality holographic imaging. Opt. Express, 27, 7108-7119(2019).

    [41] V. Popov, B. Ratni, S. N. Burokur. Non‐local reconfigurable sparse metasurface: efficient near‐field and far‐field wavefront manipulations. Adv. Opt. Mater., 9, 2001316(2021).

    [42] K. Chen, Y. Feng, F. Monticone. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [43] J. Wu, F. Tang, J. Ma. Angle-sensitive dynamic optical modulation based on Huygens metasurfaces. Results Phys., 18, 103226(2020).

    [44] M. M. Salary, H. Mosallaei. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum. ACS Photon., 7, 1813-1829(2020).

    [45] A. Leitis, A. Heßler, S. Wahl. All‐dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1910259(2020).

    [46] K. Fan, I. V. Shadrivov, W. J. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).

    [47] A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photon., 5, 1742-1748(2018).

    [48] Q. Zhou, Q. Qiu, T. Wu. Ultrafast all-optical switching modulation of terahertz polarization conversion metasurfaces based on silicon. ACS Omega, 8, 48465-48479(2023).

    [49] A. Tognazzi, P. Franceschini, O. Sergaeva. Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces. Adv. Photon., 5, 066006(2023).

    [50] A. Howes, Z. Zhu, D. Curie. Optical limiting based on Huygens’ metasurfaces. Nano Lett., 20, 4638-4644(2020).

    [51] T. Kang, Z. Ma, J. Qin. Large-scale, power-efficient Au/VO2 active metasurfaces for ultrafast optical modulation. Nanophotonics, 10, 909-918(2020).

    [52] M. R. Shcherbakov, S. Liu, V. V. Zubyuk. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [53] A. Tognazzi, M. Gandolfi, B. Li. Opto-thermal dynamics of thin-film optical limiters based on the VO2 phase transition. Opt. Mater. Express, 13, 41-52(2023).

    [54] Q. Zhou, T. Wu, Y. Li. Multifunctional metasurface for ultrafast all-optical efficient modulation of terahertz wave. Opt. Commun., 555, 130244(2024).

    [55] K.-S. Im, J.-B. Ha, K.-W. Kim. Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate. IEEE Electron Device Lett., 31, 192-194(2010).

    [56] Y. Zhang, S. Qiao, S. Liang. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett., 15, 3501-3506(2015).

    [57] Y. Zhao, L. Wang, Y. Zhang. High-speed efficient terahertz modulation based on tunable collective-individual state conversion within an active 3 nm two-dimensional electron gas metasurface. Nano Lett., 19, 7588-7597(2019).

    [58] F. Lan, L. Wang, H. Zeng. Real-time programmable metasurface for terahertz multifunctional wave front engineering. Light Sci. Appl., 12, 191(2023).

    [59] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [60] A. Rahimzadegan, D. Arslan, D. Dams. Beyond dipolar Huygens’ metasurfaces for full-phase coverage and unity transmittance. Nanophotonics, 9, 75-82(2019).

    [61] A. Howes, W. Wang, I. Kravchenko. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica, 5, 787-792(2018).

    [62] M. Liu, D. A. Powell, Y. Zarate. Huygens’ metadevices for parametric waves. Phys. Rev. X, 8, 031077(2018).

    [63] D. Shrekenhamer, S. Rout, A. C. Strikwerda. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt. Express, 19, 9968-9975(2011).

    Hongxin Zeng, Xuan Cong, Shiqi Wang, Sen Gong, Lin Huang, Lan Wang, Huajie Liang, Feng Lan, Haoyi Cao, Zheng Wang, Weipeng Wang, Shixiong Liang, Zhihong Feng, Ziqiang Yang, Yaxin Zhang, Tie Jun Cui. Ultrafast modulable 2DEG Huygens metasurface[J]. Photonics Research, 2024, 12(5): 1004
    Download Citation