• Advanced Photonics
  • Vol. 6, Issue 3, 035001 (2024)
Lei Guo1, Min Ji1, Bowen Kang1, Min Zhang1, Xin Xie1, Zihao Wu1, Huan Chen1、*, Volker Deckert2, and Zhenglong Zhang1、*
Author Affiliations
  • 1Shaanxi Normal University, School of Physics and Information Technology, Xi’an, China
  • 2Friedrich-Schiller University, Leibniz Institute of Photonic Technology, Jena, Germany
  • show less
    DOI: 10.1117/1.AP.6.3.035001 Cite this Article Set citation alerts
    Lei Guo, Min Ji, Bowen Kang, Min Zhang, Xin Xie, Zihao Wu, Huan Chen, Volker Deckert, Zhenglong Zhang. Plasmon-assisted mode selection lasing in a lanthanide-based microcavity[J]. Advanced Photonics, 2024, 6(3): 035001 Copy Citation Text show less
    References

    [1] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [2] Y. Zhi et al. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [3] K. D. Heylman et al. Optical microresonators for sensing and transduction: a materials perspective. Adv. Mater., 29, 1700037(2017).

    [4] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [5] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [6] X. Zhang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [7] Z. Shen et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [8] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [9] L. Jin et al. Enhancing multiphoton upconversion from NaYF4: Yb/Tm@NaYF4 core-shell nanoparticles via the use of laser cavity. ACS Nano, 11, 843-849(2017). https://doi.org/10.1021/acsnano.6b07322

    [10] T. Wang et al. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics, 4, 1539-1543(2017). https://doi.org/10.1021/acsphotonics.7b00301

    [11] X. Yang et al. Lanthanide upconverted microlasing: microlasing spanning full visible spectrum to near-infrared under low power, CW pumping. Small, 17, 2103140(2021).

    [12] Y. Liu et al. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano, 14, 1508-1519(2020).

    [13] Y. Shang et al. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun., 11, 6156(2020).

    [14] B. S. Moon et al. Continuous-wave upconversion lasing with a sub-10  Wcm2 threshold enabled by atomic disorder in the host matrix. Nat. Commun., 12, 4437(2021). https://doi.org/10.1038/s41467-021-24751-z

    [15] Q. Zhang et al. Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. Nano Energy, 30, 481-487(2016).

    [16] B. Zhou et al. Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. J. Mater. Chem. C, 6, 11740-11748(2018).

    [17] G. Wei et al. Low-threshold organic lasers based on single-crystalline microribbons of aggregation-induced emission luminogens. J. Phys. Chem. Lett., 10, 679-684(2019).

    [18] L. Zhao et al. High quality two-photon pumped whispering-gallery-mode lasing from ultrathin CdS microflakes. J. Mater. Chem., 7, 12869-12875(2019).

    [19] B. Tang et al. Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv. Opt. Mater., 6, 1800391(2018).

    [20] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [21] D. Dai, J. Bauters, J. E. Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Sci. Appl., 6, e1(2012).

    [22] J. Chee, S. Zhu, G. Q. Lo. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt. Express, 20, 25345-25355(2012).

    [23] Z. Wu, Z. Xu. Achromatic on-chip focusing of graphene plasmons for spatial inversions of broadband digital optical signals. Adv. Photonics Nexus, 2, 056003(2023).

    [24] M. Jung, G. Shvets. Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices. Adv. Photonics, 5, 026004(2023).

    [25] H. Dong et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano, 11, 3289-3297(2017).

    [26] H. Dong et al. Selective cation exchange enabled growth of lanthanide core/shell nanoparticles with dissimilar structure. J. Am. Chem. Soc., 139, 18492-18495(2017).

    [27] T. Zhang et al. Controlled multichannel surface plasmon polaritons transmission on atomic smooth silver triangular waveguide. Adv. Opt. Mater., 7, 1900930(2019).

    [28] H. Chen et al. Multiplasmons-pumped excited-state absorption and energy transfer upconversion of rare-earth-doped luminescence beyond the diffraction limit. ACS Photonics, 8, 1335-1343(2019).

    [29] H. Chen et al. Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle. Nat. Photonics, 16, 651-657(2022).

    [30] A. B. Vasista et al. Vectorial fluorescence emission from microsphere coupled to gold mirror. Adv. Opt. Mater., 6, 1801025(2018).

    Lei Guo, Min Ji, Bowen Kang, Min Zhang, Xin Xie, Zihao Wu, Huan Chen, Volker Deckert, Zhenglong Zhang. Plasmon-assisted mode selection lasing in a lanthanide-based microcavity[J]. Advanced Photonics, 2024, 6(3): 035001
    Download Citation