• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312014 (2023)
Jiao Bai1, Jingwen Li2, Xiaohao Wang2, and Xinghui Li2、3、*
Author Affiliations
  • 1Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, China
  • 2Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • 3Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China
  • show less
    DOI: 10.3788/LOP222679 Cite this Article Set citation alerts
    Jiao Bai, Jingwen Li, Xiaohao Wang, Xinghui Li. Research Progress of High Precision Chromatic Confocal Displacement Measurement Technology[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312014 Copy Citation Text show less
    Diagram of chromatic confocal technology. (a) Basic principle; (b) response curve
    Fig. 1. Diagram of chromatic confocal technology. (a) Basic principle; (b) response curve
    Turned and milled surface measurement by chromatic confocal sensor[21]
    Fig. 2. Turned and milled surface measurement by chromatic confocal sensor[21]
    On-machine furface profile measurement by chromatic confocal technology. (a), (b), (c) Turned sphere surface[26]; (d), (e), (f) grinded free-form surface[27]
    Fig. 3. On-machine furface profile measurement by chromatic confocal technology. (a), (b), (c) Turned sphere surface[26]; (d), (e), (f) grinded free-form surface[27]
    Micro structure measurement using chromatic confocal technology. (a) Microcolumn array[38]; (b) microgroove[40]; (c) MEMS structure[41]; (d) micro letter structure[44]
    Fig. 4. Micro structure measurement using chromatic confocal technology. (a) Microcolumn array[38]; (b) microgroove[40]; (c) MEMS structure[41]; (d) micro letter structure[44]
    Biological tissues measurement using chromatic confocal sensors. (a) Onion slices[45]; (b) human cornea[46]; (c), (d) porcine oral mucosa[48]; (e) teeth profile[49]
    Fig. 5. Biological tissues measurement using chromatic confocal sensors. (a) Onion slices[45]; (b) human cornea[46]; (c), (d) porcine oral mucosa[48]; (e) teeth profile[49]
    Workpiece thickness measurement using chromatic confocal sensor. (a) Step height measurement[50]; (b) symmetrical measurement[51]; (c) auxiliary membrane symmetry measurement[54]
    Fig. 6. Workpiece thickness measurement using chromatic confocal sensor. (a) Step height measurement[50]; (b) symmetrical measurement[51]; (c) auxiliary membrane symmetry measurement[54]
    Film thickness measurement by chromatic confocal technology. (a), (b) Double-layer reflective method[58]; (c) constant incident-angle method[60]
    Fig. 7. Film thickness measurement by chromatic confocal technology. (a), (b) Double-layer reflective method[58]; (c) constant incident-angle method[60]
    Light source of chromatic confocal system. (a) PCF device and its spectrum[63]; (b) MOF supercontinum light source and its spectrum[64]
    Fig. 8. Light source of chromatic confocal system. (a) PCF device and its spectrum[63]; (b) MOF supercontinum light source and its spectrum[64]
    Dispersion objective of chromatic confocal system. (a), (b), (c) Lens group[72-73, 75]; (d) series lens[77]
    Fig. 9. Dispersion objective of chromatic confocal system. (a), (b), (c) Lens group[72-73, 75]; (d) series lens[77]
    Dispersion objective based on DOE. (a) Dispersion characteristics of DOE[79]; (b) DOE physical object[87]; (c) chromatic confocal system with DOE[79]; (d), (e) DOE mixed with lens[85]; (f) DOE multipoint chromatic confocal system[84]
    Fig. 10. Dispersion objective based on DOE. (a) Dispersion characteristics of DOE[79]; (b) DOE physical object[87]; (c) chromatic confocal system with DOE[79]; (d), (e) DOE mixed with lens[85]; (f) DOE multipoint chromatic confocal system[84]
    Chromatic confocal system with different confocal types. (a) Pinhole array[94]; (b) LCD pixel array[45]
    Fig. 11. Chromatic confocal system with different confocal types. (a) Pinhole array[94]; (b) LCD pixel array[45]
    Chromatic confocal system with fiber. (a) Multimode fiber[97]; (b) fiber coupler[99]
    Fig. 12. Chromatic confocal system with fiber. (a) Multimode fiber[97]; (b) fiber coupler[99]
    Detection methods of chromatic confocal system. (a) Transmissivity difference[103]; (b) CCD difference[104]
    Fig. 13. Detection methods of chromatic confocal system. (a) Transmissivity difference[103]; (b) CCD difference[104]
    Normalization strategies of chromatic confocal system. Normalization strategies of (a), (b) light source spectrum[97]; (c), (d) reflected spectrum after removing dispersion objective[64]; (e), (f) pre-scaned self-reference spectrum[108]
    Fig. 14. Normalization strategies of chromatic confocal system. Normalization strategies of (a), (b) light source spectrum[97]; (c), (d) reflected spectrum after removing dispersion objective[64]; (e), (f) pre-scaned self-reference spectrum[108]
    ProductStil(CL2-MG210)Precitec(CHRocodile C)Micro-Epsilon(IFS2402)ThinkFocus(OP2)LightE-Technology(D35A40R0S3)
    Measuring range /μm400500400380400
    Maximal slope angle /(°)±28±45±13±28±40
    Spot size /μm459103.4
    Axial resolution /nm1022016201
    Linearity error±55 nm170 nm±0.08 %±0.02 %
    Diameter /mm274382735
    Measuring frequency /kHz2.04.06.54.54.0
    Table 1. Performance parameters of several chromatic confocal sensor products
    Jiao Bai, Jingwen Li, Xiaohao Wang, Xinghui Li. Research Progress of High Precision Chromatic Confocal Displacement Measurement Technology[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312014
    Download Citation