• Infrared and Laser Engineering
  • Vol. 53, Issue 2, 20230730 (2024)
Bingzheng Yan1、2, Xikui Mu1、2, Jiashuo An1、2, Yaoyao Qi1、2, Jie Ding1、2, Zhenxu Bai1、2、*, Yulei Wang1、2, and Zhiwei Lv1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230730 Cite this Article
    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730 Copy Citation Text show less
    References

    [1] D C Brown, J W Kuper. Solid-state lasers: Steady progress through the decades. Optics and Photonics News, 20, 36-41(2009).

    [2] N Zhuo, F Liu, Z Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared. Journal of Semiconductors, 41, 010301(2020).

    [3] Zhenxu Bai, Jia Gao, Chen Zhao, et al. Research progress of long-wave infrared lasers based on nonlinear frequency conversion. Acta Optica Sinica, 43, 0314001(2023).

    [4] Baoquan Yao, Ke Yang, Shuyi Mi, et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals. Chinese Journal of Lasers, 49, 0101002(2022).

    [5] G J Koch, B W Barnes, M Petros, et al. Coherent differential absorption lidar measurements of CO2. Applied Optics, 43, 5092-5099(2004).

    [6] G J Koch, J Y Beyon, B W Barnes, et al. High-energy 2 μm Doppler lidar for wind measurements. Optical Engineering, 46, 116201(2007).

    [7] T Y Dai, J Wu, L Ju, et al. A tunable and single-longitudinal-mode Ho: YLF laser. Infrared Physics & Technology, 77, 149-152(2016).

    [8] F Gibert, P H Flamant, D Bruneau, et al. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Applied Optics, 45, 4448-4458(2006).

    [9] Changdong Niu, Ruifeng Dai, Ruike Liu, et al. Single-longitudinal-mode selection technology and application of solid-state laser. Electro-Optic Technology Application, 35, 38-47(2020).

    [10] Qing Wang, Chunqing Gao. Research progress on eye-safe all-solid-state single-frequency lasers. Chinese Journal of Lasers, 48(2021).

    [11] B Q Yao, X M Duan, D Fang, et al. 7.3 W of single-frequency output power at 2.09 μm from an Ho: YAG monolithic nonplanar ring laser. Optics Letters, 33, 2161-2163(2008).

    [12] J Wu, Y Ju, T Y Dai, et al. 1.5 W high efficiency and tunable single-longitudinal-mode Ho: YLF ring laser based on Faraday effect. Optics Express, 25, 27671-27677(2017).

    [13] U N Singh, B M Walsh, J Yu, et al. Twenty years of Tm: Ho: YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Optical Materials Express, 5, 827-837(2015).

    [14] V Wulfmeyer, M Randall, A Brewer, et al. 2 μm Doppler lidar transmitter with high frequency stability and low chirp. Optics Letters, 25, 1228-1230(2000).

    [15] I Mingareev, F Weirauch, A Olowinsky, et al. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology, 44, 2095-2099(2012).

    [16] N M Fried, K E Murray. High-power thulium fiber laser ablation of urinary tissues at 1.94 microm. Journal of Endourology, 19, 25-31(2005).

    [17] Bingzheng Yan, Zhenxu Bai, Yaoyao Qi, et al. Advances in all-solid-state laser for novel low-dimensional material saturated absorbers (Invited). Electro-Optic Technology Application, 37, 27-39(2022).

    [18] Hao Zheng, Chen Zhao, Fei Zhang, et al. Study on the longitudinal mode characteristic of idler wave in MgO: PPLN infrared optical parametric oscillator. Infrared and Laser Engineering, 52, 20230378(2023).

    [19] Yakai Zhang, Hui Chen, Zhenao Bai, et al. Multi-wavelength red diamond Raman laser. Infrared and Laser Engineering, 52, 20230329(2023).

    [20] Z Bai, Z Zhao, M Tian, et al. A comprehensive review on the development and applications of narrow‐linewidth lasers. Microwave and Optical Technology Letters, 64, 2244-2255(2022).

    [21] Pengfei Li, Fei Zhang, Kai Li, et al. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited). Infrared and Laser Engineering, 52, 20230403(2023).

    [22] Yilan Chen, Xiaolei Zhu, Junxuan Zhang, et al. Development of pulsed single-frequency 2 μm all-solid-state laser. Laser & Optoelectronics Progress, 57, 050006(2020).

    [23] X P Zhang, Z H Wang, S Liu, et al. Development of single-longitudinal-mode selection technology for solid-state lasers. International Journal of Optics, 2021, 6667015(2021).

    [24] Y Park, G Giuliani, R Byer. Single axial mode operation of a Q-switched Nd: YAG oscillator by injection seeding. IEEE Journal of Quantum Electronics, 20, 117-125(1984).

    [25] K Scholle, S Lamrini, P Koopmann, et al. 2 µm laser sources and their possible applications. Frontiers in Guided Wave Optics & Optoelectronics, 21, 471-500.(2010).

    [26] T Y Dai, S X Guo, X M Duan, et al. High efficiency single-longitudinal-mode resonantly-pumped Ho: GdTaO4 laser at 2068 nm. Optics Express, 27, 34204-34210(2019).

    [27] Hao Zhu, Bohao Wang, Jiayou Tao, et al. Single longitudinal mode laser output through twisted mode cavity method. Journal of Hunan Institute of Science and Technology (Natural Sciences), 34, 13-17(2021).

    [28] B Q Yao, T Y Dai, X M Duan, et al. Tunable single-longitudinal-mode Er: YAG laser using a twisted-mode technique at 1.6 μm. Laser Physics Letters, 12, 025004(2015).

    [29] Y W Jiang, P L Li, X Fu, et al. Sub-nanosecond, single longitudinal mode laser based on a VBG‐coupled EOQ Nd: YVO4 oscillator for remote sensing. Microwave and Optical Technology Letters, 63, 2541-2547(2021).

    [30] H T Huang, H Wang, D Y Shen. VBG-locked continuous-wave and passively Q-switched Tm: Y2O3 ceramic laser at 2.1 μm. Optical Materials Express, 7, 3147-3154(2017).

    [31] F Gibert, D Edouart, C Cenac, et al. 2 μm high-power multiple-frequency single-mode Q-switched Ho: YLF laser for DIAL application. Applied Physics B, 116, 967-976(2014).

    [32] T Walther, M P Larsen, E S Fry. Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti: sapphire laser. Applied Optics, 40, 3046-3050(2001).

    [33] S W Henderson, E H Yuen, E S Fry. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd: YAG lasers. Optics Letters, 11, 715-717(1986).

    [34] J Yu, B C Trieu, E A Modlin, et al. 1 J/pulse Q-switched 2 µm solid-state laser. Optics Letters, 31, 462-464(2006).

    [35] G J Koch, J Y Beyon, P J Petzar, et al. Field testing of a high-energy 2 μm Doppler lidar. Journal of Applied Remote Sensing, 4, 043512(2010).

    [36] Bai Y X, Yu J R, Wong T H, et al. Singlemode, high repetition rate, compact Ho: YLF laser f spacebne lidar applications[C]CLEO: Applications Technology. IEEE, 2014: AW1P. 4.

    [37] T Y Dai, Z G Fan, J Wu, et al. High power single-longitudinal-mode Ho: YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate. Infrared Physics & Technology, 82, 40-43(2017).

    [38] R X Wang, B Q Yao, B R Zhao, et al. Single-longitudinal-mode Ho: YVO4 MOPA system with a passively Q-switched unidirectional ring oscillator. Optics Express, 27, 34618-34625(2019).

    [39] K Mizutani, S Ishii, M Aoki, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser. Optics Letters, 43, 202-205(2018).

    [40] J Wu, Y Wu, T Y Dai, et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho: YAP ring laser. Optical Engineering, 58, 016116(2019).

    [41] J Wu, Y L Ju, B Q Yao, et al. High power single-longitudinal-mode Ho3+: YVO4 unidirectional ring laser. Chinese Optics Letters, 15, 031402(2017).

    [42] T Y Dai, Y P Wang, S X Guo, et al. Tunable twisted-mode Ho: YAG laser at continuous-wave and pulsed operation. Optics Express, 28, 31775-31780(2020).

    [43] Y L Ju, W Liu, B Q Yao, et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho: YAG twisted-mode laser. Chinese Optics Letters, 13, 111403(2015).

    [44] C Q Gao, R X Wang, Z Lin, et al. 2 μm single-frequency Tm: YAG laser generated from a diode-pumped L-shaped twisted mode cavity. Applied Physics B, 107, 67-70(2012).

    [45] Dai Tongyu, Yao Baoquan, Liu Wei, et al. Singledoped Ho: YAG tunable singlelongitudinalmode laser based on twistedmode technology: CN201410457753.5[P]. 20140910. (in Chinese)

    [46] L Li, Y L Ju, T Y Dai, et al. L-shaped single-longitudinal-mode Tm, Ho: YAG lasers based on twisted mode cavity. Laser & Optoelectronics Progress, 54, 081408(2017).

    [47] C J Jin, Y Bai, L F Li, et al. A single-frequency, graphene-based passively Q-switched Tm: YAP laser. Laser Physics, 25, 015001(2014).

    [48] X M Duan, L J Li, X S Guo, et al. Wavelength-locked continuous-wave and Q-switched Ho: CaF2 laser at 2100.5 nm. Optics Express, 26, 26916-26924(2018).

    [49] X M Duan, W S Zhang, L J Li, et al. Electro-optically cavity-dumped Ho: SSO laser with a pulse width of 3.6 ns and linewidth of 70 pm. Laser Physics, 29, 015802(2018).

    [50] Q Berthomé, A Grisard, B Faure, et al. Actively Q-switched tunable single-longitudinal-mode 2 µm Tm: YAP laser using a transversally chirped volume Bragg grating. Optics Express, 28, 5013-5021(2020).

    [51] Menglong Li, Long Gao, Wenzong Shi, et al. Progress in all-solid-state single-frequency lasers. Laser & Optoelectronics Progress, 53, 080003(2016).

    [52] Y J Li, J X Feng, P Li, et al. 400 mW low noise continuous-wave single-frequency Er, Yb: YAl3 (BO3) 4 laser at 1.55 μm. Optics Express, 21, 6082-6090(2013).

    [53] J H Huang, Y J Chen, Y F Lin, et al. 940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er: Yb: Lu2Si2O7 microchip lasers. Optics Letters, 43, 1643-1646(2018).

    [54] P Loiko, J M Serres, X Mateos, et al. Subnanosecond Tm: KLuW microchip laser Q-switched by a Cr: ZnS saturable absorber. Optics Letters, 40, 5220-5223(2015).

    [55] D Zhang, Y Wang, Y Chen, et al. Study on satellite pulse characteristics of LD-end pumped sub-nanosecond Nd: YAG/Cr4+: YAG oscillator. Optik, 286, 170889(2023).

    [56] U N Singh, J A Williams-byrd, N P Barnes, et al. Diode-pumped 2-μm solid state lidar transmitter for wind measurements. Lidar Atmospheric Monitoring, 3104, 173-178(1997).

    [57] U N Singh. Development of high-pulse energy Ho: Tm: YLF coherent transmitters. Laser Radar Technology and Applications, 3380, 70-74(1998).

    [58] T Y Dai, Y L Ju, X M Duan, et al. 2130.7 nm, single-frequency Q-switched operation of Tm, Ho: YAlO3 laser injection-seeded by a microchip Tm, Ho: YAlO3 laser. Applied Physics Express, 5, 082702(2012).

    [59] Y Y Wang, J H Liu, S C Li, et al. Stable and simple structure passively Q-switched single-longitudinal-mode laser. Chinese Journal of Lasers, 31, 531-534(2004).

    [60] X L Zhang, L Li, J H Cui, et al. Single longitudinal mode and continuously tunable frequency Tm, Ho: YLF laser with two solid etalons. Laser Physics Letters, 7, 194-197(2010).

    [61] L Wang, C Q Gao, M W Gao, et al. A diode-pumped tunable single frequency Tm: YAG laser at room temperature using two etalons. Laser Physics, 22, 398-402(2012).

    [62] D Jin, Z Bai, Q Wang, et al. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+: YAG. Optics Communications, 463, 125500(2020).

    [63] Nan Li, Weimin Wang, Yanhua Lu, et al. Tunable linewidth control technique for solid-state laser based on Fabry-Perot etalon. High Power Laser and Particle Beams, 25, 1139-1143(2013).

    [64] X T Yang, L Liu, P Zhang, et al. A resonantly pumped single-longitudinal mode Ho: Sc2SiO5 laser with two Fabry–Perot etalons. Applied Sciences, 7, 434-435(2017).

    [65] T Y Dai, Y L Ju, B Q Yao, et al. Single-frequency, Q-switched Ho: YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho: YAG laser. Optics Letters, 37, 1850-1852(2012).

    [66] T Y Dai, Y P Wang, X S Wu, et al. An injection-seeded Q-switched Ho: YLF laser by a tunable single-longitudinal-mode Tm, Ho: YLF laser at 2050.96 nm. Optics Laser Technology, 106, 7-11(2018).

    [67] H J Strauss, W Koen, C Bollig, et al. Ho: YLF & Ho: LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses. Optics Express, 19, 13974-13979(2011).

    [68] H J Strauss, D Preussler, M J D Esser, et al. 330 mJ, single-frequency Ho:YLF slab amplifier. Optics Letters, 1022-1024(2013).

    [69] Y P Wang, T Y Dai, X Y Liu, et al. Dual-wavelength injection-seeded Q-switched Ho: YLF laser for CO2 differential absorption lidar application. Optics Letters, 44, 6049(2019).

    [70] D Yan, Y Yuan, Y P Wang, et al. High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser. High Power Laser Science and Engineering, 11, e66(2023).

    [71] Y S Zhang, C Q Gao, M W Gao, et al. Frequency stabilization of a single-frequency Q-switched Tm: YAG laser by using injection seeding technique. Applied Optics, 50, 4232-4236(2011).

    [72] T J Kane, R L Byer. Monolithic, unidirectional single-mode Nd: YAG ring laser. Optics Letters, 10, 65-67(1985).

    [73] A C Nilsson, E K Gustafson, R L Byer. Eigenpolarization theory of monolithic nonplanar ring oscillators. IEEE Journal of Quantum Electronics, 25, 767-790(1989).

    [74] P Kwee, C Bogan, K Danzmann, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Optics Express, 20, 10617-10634(2012).

    [75] T Y Dai, Y L Ju, B Q Yao, et al. Injection-seeded Ho: YAG laser at room temperature by monolithic nonplanar ring laser. Laser Physics Letters, 9, 716-720(2012).

    [76] Y X Zhang, C Q Gao, Q Wang, et al. Single-frequency, injection-seeded Q-switched Ho: YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD. Optics Express, 24, 27805(2016).

    [77] Y X Zhang, C Q Gao, Q Wang, et al. High-repetition-rate single-frequency Ho: YAG MOPA system. Applied Optics, 57, 4222-4227(2018).

    [78] D Yan, Y P Wang, Y Yuan, et al. Injection-seeded, Q-switched Ho: YAG laser based on alignment-insensitive corner cone reflectors. Optics & Laser Technology, 166, 109584(2023).

    [79] F Gibert, D Edouart, C Cenac, et al. 2 μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere. Optics Letters, 40, 3093-3096(2015).

    [80] Y L Chen, Y H Cai, J X Zhang, et al. 5.6 mJ, single-frequency, end-pumped Tm: Ho: LuLiF4 slab amplifier system. IEEE Photonics Technology Letters, 32, 231-234(2020).

    [81] Q X Na, C Q Gao, Q Wang, et al. 15 mJ single-frequency Ho: YAG laser resonantly pumped by a 1.9 µm laser diode. Laser Physics Letters, 13, 095003(2016).

    [82] Q X Na, C Q Gao, Q Wang, et al. 1 kHz single-frequency 2.09 μm Ho: YAG ring laser. Applied Optics, 56, 7075-7078(2017).

    [83] Y P Wang, Y L Ju, T Y Dai, et al. Continuously tunable high-power single-longitudinal-mode Ho: YLF laser around the P12 CO2 absorption line. Optics Letters, 45, 6691-6694(2020).

    [84] Y X Zhang, C Q Gao, Q Wang, et al. High-energy, stable single-frequency Ho: YAG ceramic amplifier system. Applied Optics, 56, 9531-9535(2017).

    [85] T Y Dai, Y L Ju, X M Duan, et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho: YAlO3 laser at 2118 nm. Applied Physics B, 111, 89-92(2013).

    [86] Q X Na, C Q Gao, Q Wang, et al. 44 mJ, 2.1 μm single-frequency Ho: YAG amplifier. Applied Optics, 56, 1257-1260(2017).

    [87] Y P Wang, Y L Ju, T Y Dai, et al. Single-frequency and free-running operation of a single-pass pulsed Ho: YLF amplifier. High Power Laser Science and Engineering, e39(2020).

    [88] J Drs, J Fischer, N Modsching, et al. A decade of Sub-100-fs thin-disk laser oscillators. Laser & Photonics Reviews, 17, 2200258(2023).

    [89] E M Song, G Z Zhu, H L Wang, et al. Up conversion and excited state absorption analysis in the Tm: YAG disk laser multi-pass pumped by 1 μm laser. High Power Laser Science and Engineering, 9, e8(2021).

    [90] Z X Bai, H Yuan, Z H Liu, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75, 626-645(2018).

    [91] Yudong Lian, Qi Hu, Luyang Xie, et al. Research on the Stokes linewidth characteristics of the pulse compression by stimulated Brillouin scattering in medium FC-770 (invited). Infrared and Laser Engineering, 52, 20230402(2023).

    [92] Duo Jin, Zhenxu Bai, Wenqiang Fan, et al. Four times linewidth narrowing has been achieved in diamond Brillouin laser. Infrared and Laser Engineering, 52, 20230295(2023).

    [93] Bin Chen, Zhenxu Bai, Guijuan Zhao, et al. Generation of high-efficiency hundred-millijoule stimulated Brillouin scattering in fused silica. Infrared and Laser Engineering, 52, 20230421(2023).

    [94] C Cao, Y L Wang, Z X Bai, et al. Developments of picosecond lasers based on stimulated Brillouin scattering pulse compression. Frontiers in Physics, 9, 747272(2021).

    [95] Jianing Sun, Wangyulei, Zhangyu, et al. Thermal effect analysis of LD end-pumped Er : Yb : glass / Co : MALO crystal. Infrared and Laser Engineering, 52, 20230349(2023).

    [96] Peng Yang, Lun Ma, Yanling Jiang, et al. Thermal management technology of a liquid cooling thin-disk oscillator. Acta Photonica Sinica, 45, 0314007(2016).

    [97] C H Wang, L F Shen, Z L Zhao, et al. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier. Optics & Laser Technology, 85, 14-18(2016).

    [98] X Y Gao, Y Tian, Q H Liu, et al. Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions. Optics & Laser Technology, 111, 115-120(2019).

    [99] X Y Jiang, Z G Wang, J G Zhang, et al. Thermal management of water-cooled 10 Hz Yb: YAG laser amplifier. High Power Laser and Particle Beams, 32, 011010(2020).

    [100] K I Martin, W A Clarkson, D C Hanna. Self-suppression of axial mode hopping by intracavity second-harmonic generation. Optics Letters, 22, 375-377(1997).

    [101] Y Cai, F Gao, H Chen, et al. Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band. Optics Communications, 528, 128985(2023).

    [102] Muye Li, Xuezong Yang, Yuxiang Sun, et al. Single-frequency continuous-wave diamond Raman laser (Invited). Infrared and Laser Engineering, 51, 20210970(2022).

    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730
    Download Citation