• Infrared and Laser Engineering
  • Vol. 53, Issue 2, 20230730 (2024)
Bingzheng Yan1、2, Xikui Mu1、2, Jiashuo An1、2, Yaoyao Qi1、2, Jie Ding1、2, Zhenxu Bai1、2、*, Yulei Wang1、2, and Zhiwei Lv1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230730 Cite this Article
    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730 Copy Citation Text show less
    Energy scheme of active ions[23]. (a) Tm3+; (b) Ho3+
    Fig. 1. Energy scheme of active ions[23]. (a) Tm3+; (b) Ho3+
    Structure diagram. (a) Ring cavity; (b) Twisted-mode cavity
    Fig. 2. Structure diagram. (a) Ring cavity; (b) Twisted-mode cavity
    Experimental setup of the single-longitudinal-mode Q-switched Ho:YVO4 MOPA system[38]
    Fig. 3. Experimental setup of the single-longitudinal-mode Q-switched Ho:YVO4 MOPA system[38]
    Experimental setup of the twisted-mode Ho:YAG laser[42]
    Fig. 4. Experimental setup of the twisted-mode Ho:YAG laser[42]
    Experimental setup of the AO Q-switched Tm:YAP laser[50]
    Fig. 5. Experimental setup of the AO Q-switched Tm:YAP laser[50]
    Experimental setup of the injection-seeded Ho:YLF laser[66]
    Fig. 6. Experimental setup of the injection-seeded Ho:YLF laser[66]
    Experimental setup of single-longitudinal-mode Ho:YLF laser Doppler wind lidar[39]
    Fig. 7. Experimental setup of single-longitudinal-mode Ho:YLF laser Doppler wind lidar[39]
    Structure diagram of NPRO
    Fig. 8. Structure diagram of NPRO
    Experimental setup of the NPRO injection-seeded Ho:YAG laser[78]
    Fig. 9. Experimental setup of the NPRO injection-seeded Ho:YAG laser[78]
    Experimental setup of the CDIAL based on 2 µm single-longitudinal-mode laser[79]
    Fig. 10. Experimental setup of the CDIAL based on 2 µm single-longitudinal-mode laser[79]
    CrystalTypical absorption wavelength/nmAbsorption section/cm2Typical emission wavelength/nmEmission section/cm2Fluorescence lifetime/ms
    Tm:YAG7857.5×10−212 0142.9×10−2111
    Tm:YAP7953.7×10−21-8.5×10−211 940, 1 9805×10−21-6×10−214.4-7.7
    Tm:YLF7925.5×10−211 9082.3×10−2116
    Ho:YAG1 9081.09×10−202 0901.14×10−207
    Ho:YLF1 9401.2×10−202 0601.8×10−2010
    Table 1. Spectral characteristics of commonly used gain media for 2 μm solid-state laser
    YearInstitutionWavelength/nmRepetition ratePower/WEnergyPulse width/ns
    2006[34]NASA Langley Research Center2053--1.1 J-
    2010[35]NASA Langley Research Center20535 Hz1.25250 mJ-
    2014[35]NASA Langley Research Center2050.967100 Hz-40 mJ32
    2017[37]Harbin Institute of Technology2063.8-3.73--
    2017[41]Harbin Institute of Technology2053.9-0.941--
    2019[38]Harbin Institute of Technology2052.9667 kHz1.6724.9 μJ910
    Table 2. Output characteristics of 2 μm single-longitudinal-mode all-solid-state pulsed laser with ring cavity
    YearInstitutionCrystalWavelengthPower/WPulse width/ns
    2012[44]Beijing Institute of TechnologyTm:YAG2 μm1.46-
    2014[45]Harbin Institute of TechnologyHo:YAG2 μm1-
    2017[46]613th Research Institute of AVICTm:Ho:YAG2090.9 nm0.2-
    2020[42]Harbin Institute of TechnologyHo:YAG2097.46 nm0.4116.5
    Table 3. Output characteristics of 2 μm single-longitudinal-mode all-solid-state laser with twisted-mode cavity
    YearInstitutionWavelength/nmRepetition rate/kHzEnergyPulse widthLinewidth
    2015[47]Northwest University1988.896.27.5 μJ2.2 μs4.2 MHz
    2018[48]Harbin Institute of Technology2100.531.9 mJ54 ns-
    2019[49]Harbin Institute of Technology2100.510063.3µJ3.6 ns-
    2020[50]Paris-Saclay University19601230 µJ50 ns<4 pm
    Table 4. Output characteristics of 2 μm single-longitudinal-mode all-solid-state pulsed laser with VBG
    YearInstitutionWavelength /nmRepetition rateEnergy /mJPulse width /nsLinewidth /MHz
    1997[56]NASA Langley Research Center205010 Hz35400-
    1998[57]2011[67]NASA Langley Research CenterCouncil for Scientific and Industrial Research, South Africa205020646 Hz50 Hz125210170350--
    2012[58]Harbin Institute of Technology2130.7100 Hz2.82894.5
    2012[61]Harbin Institute of Technology2090.9100 Hz7.61323.5
    2012[74]Harbin Institute of Technology2090110 Hz111104.8
    2013[85]Harbin Institute of Technology2118100 Hz81513.7
    2013[68]Council for Scientific and Industrial Research, South Africa206460 Hz330--
    2015[79]French National Centre for Scientific Research20502 kHz104010
    2016[76]Beijing Institute of Technology2090.2912200 Hz14.76121.63.84
    2017[86]Beijing Institute of Technology2100200 Hz441133.98
    2018[39]National Institute of Information and Communications Technology, Japan2064200 Hz21150-
    2018[66]Harbin Institute of Technology2050.967100 Hz4.4654.1
    2018[77]Beijing Institute of Technology20901.25 kHz13.76178.92.65
    2019[69]Harbin Institute of Technology2064.414100 Hz16.1221.33.87
    2020[80]Shanghai Institute of Optics and Fine Mechanics2051.910 Hz5.6429.71.24
    2020[87]Harbin Institute of Technology2064.414100 Hz24.22502.81
    2023[77]Harbin Institute of Technology2090.6964100 Hz32.31662.84
    2023[70]Harbin Institute of Technology2096.667100 Hz33.3161.24.12
    Table 5. Output characteristics of 2 μm single-longitudinal-mode all-solid-state pulsed laser with injection-seeded
    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730
    Download Citation