• Advanced Photonics
  • Vol. 6, Issue 1, 014001 (2024)
Zong-Lu Che1、†, Chang-Cun Yan1、2、*, Xue-Dong Wang1、*, and Liang-Sheng Liao1、3、*
Author Affiliations
  • 1Soochow University, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Suzhou, China
  • 2Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou, China
  • 3Macau University of Science and Technology, Macao Institute of Materials Science and Engineering, Macau, China
  • show less
    DOI: 10.1117/1.AP.6.1.014001 Cite this Article Set citation alerts
    Zong-Lu Che, Chang-Cun Yan, Xue-Dong Wang, Liang-Sheng Liao, "Organic near-infrared optoelectronic materials and devices: an overview," Adv. Photon. 6, 014001 (2024) Copy Citation Text show less
    References

    [1] J. Qi et al. Advances in organic near-infrared materials and emerging applications. Chem. Rec., 16, 1531-1548(2016).

    [2] Y. Zhang et al. Near-infrared emitting materials via harvesting triplet excitons: molecular design, properties, and application in organic light emitting diodes. Adv. Opt. Mater., 6, 1800466(2018).

    [3] L. Liu et al. Er(3+) sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. Int. Ed., 57, 7518-7522(2018).

    [4] D. P. Karothu et al. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun., 12, 1326(2021).

    [5] B. Xie et al. Near-infrared organic optoelectronic materials for light-harvesting systems: organic photovoltaics and organic photodiodes. InfoMat, 2, 57-91(2019).

    [6] D. Meng et al. Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater., 34, e2107330(2022).

    [7] M. Zhang et al. Highly stable nonhydroxyl antisolvent polymer dielectric: a new strategy towards high-performance low-temperature solution-processed ultraflexible organic transistors for skin-inspired electronics. Research, 2021, 9897353(2021).

    [8] Z. L. Che et al. Organic near-infrared luminescent materials based on excited state intramolecular proton transfer process. Chin. J. Chem., 40, 2468-2481(2022).

    [9] L. Dou et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev., 115, 12633-12665(2015).

    [10] Z. Wu et al. Emerging design and characterization guidelines for polymer-based infrared photodetectors. Acc. Chem. Res., 51, 3144-3153(2018).

    [11] Y. Hu et al. Exciplex-based organic light-emitting diodes with near-infrared emission. Adv. Optical Mater., 8, 1901917(2020).

    [12] J. J. Wu et al. Advances in near-infrared organic micro/nanolasers. Adv. Optical Mater., 11, 2200815(2022).

    [13] S. Chen et al. Optical waveguides based on one-dimensional organic crystals. PhotoniX, 2, 2(2021).

    [14] Y. Li et al. Near-infrared ternary tandem solar cells. Adv. Mater., 30, e1804416(2018).

    [15] F. Liu et al. Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor. Adv. Mater., 29, 1606574(2017).

    [16] X. Liu et al. Recent advances in organic near-infrared photodiodes. J. Mater. Chem. C, 6, 3499-3513(2018).

    [17] H. Xu et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater., 29, 1700975(2017).

    [18] Z. Tang et al. Polymer:fullerene bimolecular crystals for near-infrared spectroscopic photodetectors. Adv. Mater., 29, 1702184(2017).

    [19] G. Simone et al. Near-infrared tandem organic photodiodes for future application in artificial retinal implants. Adv. Mater., 30, e1804678(2018).

    [20] B. M. Savoie et al. Mesoscopic features of charge generation in organic semiconductors. Acc. Chem. Res., 47, 3385-3394(2014).

    [21] S. D. Dimitrov, J. R. Durrant. Materials design considerations for charge generation in organic solar cells. Chem. Mater., 26, 616-630(2013).

    [22] H. Xiang et al. Near-infrared phosphorescence: materials and applications. Chem. Soc. Rev., 42, 6128-6185(2013).

    [23] X. Han et al. Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode. Adv. Funct. Mater., 25, 7521-7529(2015).

    [24] J. J. Wu et al. Advances in energy-level systems of organic lasers. Laser Photonics Rev., 16, 2200366(2022).

    [25] J. Clark, G. Lanzani. Organic photonics for communications. Nat. Photonics, 4, 438-446(2010).

    [26] B. Mizaikoff. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev., 42, 8683-8699(2013).

    [27] X. Yu et al. Deep-red-emissive flexible optical waveguide with high elastic performance based on an organic crystal. ChemPhotoChem, 6, e202200038(2022).

    [28] Y. S. Zhao et al. Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano, 4, 1630-1636(2010).

    [29] J. Zhang et al. Recent progress in near-infrared organic electroluminescent materials. Top. Curr. Chem., 380, 6(2021).

    [30] M. A. Baldo et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151(1998).

    [31] D. H. Lim et al. Recent progress of ultra-narrow-bandgap polymer donors for NIR-absorbing organic solar cells. Nanosc. Adv., 3, 4306(2021).

    [32] N. Li et al. Advances in solution-processable near-infrared phototransistors. J. Mater. Chem. C, 7, 3711-3729(2019).

    [33] Q. Li et al. Exploration of near-infrared organic photodetectors. Chem. Mater., 31, 6359-6379(2019).

    [34] A. Zampetti et al. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater., 29, 1807623(2019).

    [35] Y. Zhang, J. Qiao. Near-infrared emitting iridium complexes: molecular design, photophysical properties, and related applications. iScience, 24, 102858(2021).

    [36] J. X. Chen et al. Red/near-infrared thermally activated delayed fluorescence OLEDs with near 100% internal quantum efficiency. Angew. Chem. Int. Ed., 58, 14660-14665(2019).

    [37] J.-J. Wu et al. Near-infrared solid-state lasers based on small organic molecules. ACS Photonics, 6, 2590-2599(2019).

    [38] Y. J. Yu et al. Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel. iScience, 24, 102123(2021).

    [39] G. P. Kini et al. Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv. Funct. Mater., 31, 2007931(2021).

    [40] K. Gao et al. Low-bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications. Adv. Mater., 32, e1906129(2020).

    [41] P. Cheng et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics, 12, 131-142(2018).

    [42] C. Yan et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater., 3, 18003(2018).

    [43] Q. Xue et al. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy Environ. Sci., 11, 1688-1709(2018).

    [44] J. Qin et al. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater., 30, 2002529(2020).

    [45] H. Sun et al. Recent progress on non-fullerene acceptors for organic photovoltaics. Mater. Today, 24, 94-118(2019).

    [46] C. J. Brabec et al. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem. Soc. Rev., 40, 1185-1199(2011).

    [47] G. Li et al. Polymer solar cells. Nat. Photonics, 6, 153-161(2012).

    [48] W. Gao et al. Near-infrared absorbing nonfullerene acceptors for organic solar cells. Sol. RRL, 6, 2100868(2021).

    [49] J. Zhang et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy, 3, 720-731(2018).

    [50] J. H. Hou et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc., 130, 16144-16145(2008).

    [51] M. M. Wienk et al. Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv. Mater., 20, 2556-2560(2008).

    [52] P. Zhou et al. Thiophene-fused benzothiadiazole: a strong electron-acceptor unit to build D–A copolymer for highly efficient polymer solar cells. Chem. Mater., 26, 3495-3501(2014).

    [53] W. Chen, Q. Zhang. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J. Mater. Chem. C, 6, 1275-1302(2017).

    [54] S. Dai, X. Zhan. Nonfullerene acceptors for semitransparent organic solar cells. Adv. Energy Mater., 8, 1800002(2018).

    [55] X. Fan et al. Ladder-type nonacyclic arene bis(thieno[3,2-b]thieno)cyclopentafluorene as a promising building block for non-fullerene acceptors. Chem. Asian J., 14, 1814-1822(2019).

    [56] W. Liu et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett., 6, 598-608(2021).

    [57] H. Sun et al. PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Appl. Mater. Interfaces, 9, 29924-29931(2017).

    [58] H.-Y. Chen et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics, 3, 649-653(2009).

    [59] S. H. Liao et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater., 25, 4766-4771(2013).

    [60] Y. Zhao et al. Diketopyrrolopyrrole based A2-D-A1-D-A2 type small molecules for organic solar cells: effects of substitution of benzene with thiophene. Dyes Pigm., 130, 282-290(2016).

    [61] J. C. Bijleveld et al. Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J. Am. Chem. Soc., 131, 16616-16617(2009).

    [62] G. Oklem et al. A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C, 6, 2957-2961(2018).

    [63] B. Hu et al. Novel donor–acceptor polymers based on 7-perfluorophenyl-6H-[1,2,5]thiadiazole[3,4-g]benzoimidazole for bulk heterojunction solar cells. RSC Adv., 6, 50137-50145(2015).

    [64] D. Mühlbacher et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater., 18, 2884-2889(2006).

    [65] J. You et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun., 4, 1446(2013).

    [66] S. Chen et al. A visible-near-infrared absorbing A–π2–D–π1–D–π2–A type dimeric-porphyrin donor for high-performance organic solar cells. J. Mater. Chem. A, 6, 25460-25468(2017).

    [67] F. Yang et al. A simple, small-bandgap porphyrin-based conjugated polymer for application in organic electronics. Macromol. Rapid Commun., 39, e1800546(2018).

    [68] P. Cheng, Y. Yang. Narrowing the band gap: the key to high-performance organic photovoltaics. Acc. Chem. Res., 53, 1218-1228(2020).

    [69] C. Y. Yu et al. Thiophene/phenylene/thiophene-based low-bandgap conjugated polymers for efficient near-infrared photovoltaic applications. Chem. Mater., 21, 3262-3269(2009).

    [70] W. Li et al. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res., 49, 78-85(2016).

    [71] W. Chen et al. Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo[2,1,3]-thiadiazole. Tetrahedron, 70, 6217-6221(2014).

    [72] J. Zhang et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater., 31, e1807159(2019).

    [73] Y. Lin et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater., 27, 1170-1174(2015).

    [74] P. Cheng et al. Transparent hole-transporting frameworks: a unique strategy to design high-performance semitransparent organic photovoltaics. Adv. Mater., 32, e2003891(2020).

    [75] X. Zhang et al. Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. J. Mater. Chem., 20, 123-134(2010).

    [76] M. L. Keshtov et al. Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells. Polym. Chem., 4, 4033-4044(2013).

    [77] V. Tamilavan et al. Synthesis of new near infrared absorption polymers based on thiadiazoloquinoxaline and their solar cell applications. Synth. Met., 162, 1184-1189(2012).

    [78] D. G. Farnum et al. Attempted reformatskii reaction of benzonitrile, 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole. A – lactam analog of pentalene. Tetrahedron Lett., 15, 2549-2552(1974).

    [79] L. J. Huo et al. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo 3,4-c pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules, 42, 6564-6571(2009).

    [80] J. Hou et al. Organic solar cells based on non-fullerene acceptors. Nat. Mater., 17, 119-128(2018).

    [81] Q. Yue et al. N-type molecular photovoltaic materials: design strategies and device applications. J. Am. Chem. Soc., 142, 11613-11628(2020).

    [82] G. Zhang et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev., 118, 3447-3507(2018).

    [83] C. B. Nielsen et al. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res., 48, 2803-2812(2015).

    [84] J. Wang, X. Zhan. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res., 54, 132-143(2021).

    [85] B. Kan et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc., 139, 4929-4934(2017).

    [86] H. Wang et al. Nonacyclic carbazole-based non-fullerene acceptors enable over 12% efficiency with enhanced stability for organic solar cells. J. Mater. Chem. A, 7, 21903-21910(2019).

    [87] Z. G. Zhang et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed., 56, 13503-13507(2017).

    [88] J. Sun et al. Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv. Mater., 30, e1707150(2018).

    [89] J. Yuan et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140-1151(2019).

    [90] Z. Jia et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun., 12, 178(2021).

    [91] J. Yuan et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun., 10, 570(2019).

    [92] D. Yang, D. Ma. Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Optical Mater., 7, 1800522(2019).

    [93] G. Qian, Z. Y. Wang. Near-infrared organic compounds and emerging applications. Chem. Asian J., 6, 1006-1029(2010).

    [94] G. Qian et al. Family of diazapentalene chromophores and narrow-band-gap polymers: synthesis, halochromism, halofluorism, and visible–near infrared photodetectivity. Chem. Mater., 24, 2364-2372(2012).

    [95] E. Perzon et al. A conjugated polymer for near infrared optoelectronic applications. Adv. Mater., 19, 3308-3311(2007).

    [96] Z. Su et al. High-performance organic small-molecule panchromatic photodetectors. ACS Appl. Mater. Interfaces, 7, 2529-2534(2015).

    [97] M. Zhu et al. Enhanced near-infrared photoresponse of organic phototransistors based on single-component donor-acceptor conjugated polymer nanowires. Nanoscale, 8, 7738-7748(2016).

    [98] Y. Yao et al. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater., 19, 3979-3983(2007).

    [99] M. Wang et al. High open circuit voltage in regioregular narrow band gap polymer solar cells. J. Am. Chem. Soc., 136, 12576-12579(2014).

    [100] S. Park et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater., 30, e1802359(2018).

    [101] X. Gong et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325, 1665-1667(2009).

    [102] M. Li et al. Phenanthrene condensed thiadiazoloquinoxaline donor–acceptor polymer for phototransistor applications. Chem. Mater., 27, 2218-2223(2015).

    [103] L. Zheng et al. Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5  μm by a low bandgap donor–acceptor conjugated copolymer. J. Mater. Chem. C, 6, 3634-3641(2018). https://doi.org/10.1039/C8TC00437D

    [104] Q. X. Tang et al. Photoswitches and phototransistors from organic single-crystalline submicro/nanometer ribbons. Adv. Mater., 19, 2624-2628(2007).

    [105] L. Li et al. Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule. J. Mater. Chem. C, 2, 1372-1375(2014).

    [106] C. Wang et al. N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater., 30, e1706260(2018).

    [107] J. Huang et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater., 32, e1906027(2020).

    [108] S. Deng et al. A simple fused-ring acceptor toward high-sensitivity binary near-infrared photodetector. Adv. Optical Mater., 10, 2200371(2022).

    [109] M. Young et al. Organic heptamethine salts for photovoltaics and detectors with near-infrared photoresponse up to 1600 nm. Adv. Optical Mater., 4, 1028-1033(2016).

    [110] Y. Lin et al. A solution-processable small molecule based on benzodithiophene and diketopyrrolopyrrole for high-performance organic solar cells. Adv. Energy Mater., 3, 1166-1170(2013).

    [111] M. T. Lloyd et al. Photovoltaics from soluble small molecules. Mater. Today, 10, 34-41(2007).

    [112] B. Walker et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater., 19, 3063-3069(2009).

    [113] Z. Wu et al. The role of dielectric screening in organic shortwave infrared photodiodes for spectroscopic image sensing. Adv. Funct. Mater., 28, 1805738(2018).

    [114] A. N. Bashkatov et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys., 38, 2543-2555(2005).

    [115] V. C. Bender et al. Solid-state lighting: a concise review of the state of the art on LED and OLED modeling. IEEE Ind. Electron. Mag., 9, 6-16(2015).

    [116] M. Ibrahim-Ouali, F. Dumur. Recent advances on metal-based near-infrared and infrared emitting OLEDs. Molecules, 24, 1412(2019).

    [117] Y. Yu et al. Solution-processed AIEgen NIR OLEDs with EQE approaching 15%. Angew. Chem. Int. Ed., 61, e202204279(2022).

    [118] S. T. Le et al. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing. Opt. Lett., 39, 3876-3879(2014).

    [119] P. A. Haigh et al. Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Opt. Express, 22, 2830-2838(2014).

    [120] F. Liu et al. High-efficiency near-infrared fluorescent organic light-emitting diodes with small efficiency roll-off based on AIE-active phenanthro[9,10-d]imidazole derivatives. J. Mater. Chem. C, 8, 6883-6890(2020).

    [121] G. Qian et al. Simple and efficient near-infrared organic chromophores for light-emitting diodes with single electroluminescent emission above 1000 nm. Adv. Mater., 21, 111-116(2009).

    [122] X. Du et al. Efficient non-doped near infrared organic light-emitting devices based on fluorophores with aggregation-induced emission enhancement. Chem. Mater., 24, 2178-2185(2012).

    [123] G. Tregnago et al. Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. J. Mater. Chem. C, 3, 2792-2797(2015).

    [124] C.-L. Ho et al. Red to near-infrared organometallic phosphorescent dyes for OLED applications. J. Organomet. Chem., 751, 261(2014).

    [125] C. Adachi et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys., 90, 5048-5051(2001).

    [126] M. A. Baldo et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett., 75, 4-6(1999).

    [127] W. P. Gillin, R. J. Curry. Erbium (III) tris(8-hydroxyquinoline) (ErQ): a potential material for silicon compatible 1.5 μm emitters. Appl. Phys. Lett., 74, 798-799(1999).

    [128] R. J. Curry, W. P. Gillin. 1.54  μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes. Appl. Phys. Lett., 75, 1380-1382(1999). https://doi.org/10.1063/1.124700

    [129] E. L. Williams et al. Organic light-emitting diodes having exclusive near-infrared electrophosphorescence. Appl. Phys. Lett., 89, 083506(2006).

    [130] L. Huang et al. Platinum (II) azatetrabenzoporphyrins for near-infrared organic light-emitting diodes. Appl. Phys. Lett., 109, 233302(2016).

    [131] K. Tuong Ly et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics, 11, 63-68(2016).

    [132] S.-F. Wang et al. Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window. Nat. Photonics, 16, 843-850(2022).

    [133] D. Volz et al. From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem., 17, 1988-2011(2015).

    [134] F. B. Dias et al. Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluoresc., 6, 012001(2017).

    [135] T. J. Penfold. On predicting the excited-state properties of thermally activated delayed fluorescence emitters. J. Phys. Chem. C, 119, 13535-13544(2015).

    [136] W. Zeng et al. Achieving nearly 30% external quantum efficiency for orange-red organic light-emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1,8-naphthalimide-acridine hybrids. Adv. Mater., 30, 1704961(2018).

    [137] D. R. Lee et al. Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces, 7, 9625-9629(2015).

    [138] M. Kim et al. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes. Adv. Mater., 27, 2515-2520(2015).

    [139] S. Wang et al. Highly efficient near-infrared delayed fluorescence organic light-emitting diodes using a phenanthrene-based charge-transfer compound. Angew. Chem. Int. Ed., 54, 13068-13072(2015).

    [140] C. Li et al. Deep-red to near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices. Angew. Chem. Int. Ed., 56, 11525-11529(2017).

    [141] Y. Yuan et al. Over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter. Adv. Funct. Mater., 27, 1700986(2017).

    [142] R. Nagata et al. Near-infrared electrophosphorescence up to 1.1  μm using a thermally activated delayed fluorescence molecule as triplet sensitizer. Adv. Mater., 29, 1604265(2017). https://doi.org/10.1002/adma.201604265

    [143] U. Balijapalli et al. Highly efficient near-infrared electrofluorescence from a thermally activated delayed fluorescence molecule. Angew. Chem. Int. Ed., 60, 8477-8482(2021).

    [144] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [145] Y. C. Chen, X. Fan. Biological lasers for biomedical applications. Adv. Opt. Mater., 7, 1900377(2019).

    [146] J. Liang et al. Organic microlaser arrays: from materials engineering to optoelectronic applications. Acc. Mater. Res., 2, 340-351(2021).

    [147] C. Zhang et al. Organic printed photonics: from microring lasers to integrated circuits. Sci. Adv., 1, e1500257(2015).

    [148] C.-C. Yan et al. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics, 7, 1355-1366(2020).

    [149] F. P. Schafer et al. Organic dye solution laser. Appl. Phys. Lett., 9, 306-309(1966).

    [150] I. D. W. Samuel, G. A. Turnbull. Organic semiconductor lasers. Chem. Rev., 107, 1272-1295(2007).

    [151] A. J. Kuehne, M. C. Gather. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev., 116, 12823-12864(2016).

    [152] C. C. Yan et al. Thermally activated delayed fluorescent gain materials: harvesting triplet excitons for lasing. Adv. Sci., 9, e2200525(2022).

    [153] Y.-Z. Ma et al. Exciton–exciton annihilation in copper-phthalocyanine single-crystal nanowires. J. Phys. Chem. C, 116, 21588-21593(2012).

    [154] T. Kobayashi et al. Near-infrared laser emission from luminescent plastic waveguides. Appl. Phys. Lett., 85, 185-187(2004).

    [155] C. Zhang et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc., 133, 7276-7279(2011).

    [156] H.-H. Fang et al. Functional organic single crystals for solid-state laser applications. Laser Photonics Rev., 8, 687-715(2014).

    [157] W. Zhang et al. Organic micro/nanoscale lasers. Acc. Chem. Res., 49, 1691-1700(2016).

    [158] S. Yuyama et al. Solid-state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides. Appl. Phys. Lett., 93, 023306(2008).

    [159] C. C. Yan et al. Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm. Angew. Chem. Int., 61, e202210422(2022).

    [160] D.-H. Kim et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics, 12, 98-104(2018).

    [161] H. Ye et al. Near-infrared electroluminescence and low threshold amplified spontaneous emission above 800 nm from a thermally activated delayed fluorescent emitter. Chem. Mater., 30, 6702-6710(2018).

    [162] Y. Liu et al. Suppressing nonradiative processes of organic dye with metal-organic framework encapsulation toward near-infrared solid-state microlasers. ACS Appl. Mater. Interfaces, 10, 35455-35461(2018).

    [163] X. Cheng et al. Organic crystals with near-infrared amplified spontaneous emissions based on 2′-hydroxychalcone derivatives: subtle structure modification but great property change. Angew. Chem. Int. Ed., 54, 8369-8373(2015).

    [164] X. Cheng et al. Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer. Chem. Eur. J., 22, 4899-4903(2016).

    [165] X. Wang et al. Near-infrared lasing from small-molecule organic hemispheres. J. Am. Chem. Soc., 137, 9289-9295(2015).

    [166] X. Wang et al. Tunable near-infrared organic nanowire nanolasers. Adv. Funct. Mater., 27, 1703470(2017).

    [167] X. Wang et al. Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv. Optical Mater., 6, 1700027(2017).

    [168] J.-J. Wu et al. Near-infrared organic single-crystal nanolaser arrays activated by excited-state intramolecular proton transfer. Matter, 2, 1233-1243(2020).

    [169] J. J. Wu et al. Cascaded excited-state intramolecular proton transfer towards near-infrared organic lasers beyond 850 nm. Angew. Chem. Int. Ed., 60, 9114-9119(2021).

    [170] B. Fang et al. Near-infrared microlasers from self-assembled spiropyrane-based microsphercial caps. ACS Appl. Mater. Interfaces, 11, 38226-38231(2019).

    [171] W. Y. Yang et al. Deepening insights into near-infrared excited-state intramolecular proton transfer lasing: the charm of resonance-assisted hydrogen bonds. Adv. Funct. Mater., 32, 2204129(2022).

    [172] S. M. Yoon et al. Optical waveguiding and lasing action in porphyrin rectangular microtube with subwavelength wall thicknesses. Acs Nano, 6, 2923-2929(2011).

    [173] C. Wei et al. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv. Optical Mater., 4, 1009-1014(2016).

    [174] J. Gierschner et al. Organic single crystal lasers: a materials view. Adv. Optical Mater., 4, 348-364(2016).

    [175] F. Chen, J. R. V. de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev., 8, 251-275(2014).

    [176] D. Tian, Y. Chen. Optical waveguides in organic crystals of polycyclic arenes. Adv. Opt. Mater., 9, 2002264(2021).

    [177] S. Wu et al. Low-dimensional organic metal halide hybrids with excitation-dependent optical waveguides from visible to near-infrared emission. ACS Appl. Mater. Interfaces, 13, 26451-26460(2021).

    [178] M. P. Zhuo et al. Segregated array tailoring charge-transfer degree of organic cocrystal for the efficient near-infrared emission beyond 760 nm. Adv. Mater., 34, e2107169(2022).

    [179] C.-C. Yan et al. Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. Sci. China Mater., 65, 1020-1027(2021).

    [180] Y. Huang et al. Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed., 58, 9696-9711(2019).

    [181] L. Catalano et al. A filled organic crystal as a hybrid large-bandwidth optical waveguide. Chem. Commun., 55, 4921-4924(2019).

    [182] X. Huang et al. Low-bandgap conjugated polymers with photocurrent response over 1000 nm. J. Mater. Sci., 56, 8334(2021).

    [183] Y.-C. Wei et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics, 14, 570-577(2020).

    [184] H. Lu et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604, 662-667(2022).

    [185] A. A. Sadybekov et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature, 601, 452-459(2022).

    [186] J. A. Hueffel et al. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science, 374, 1134-1140(2021).

    [187] N. H. Angello et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science, 378, 399-405(2022).

    [188] B. Mikulak-Klucznik et al. Computational planning of the synthesis of complex natural products. Nature, 588, 83-88(2020).

    [189] D. Y. Kim et al. Multi-spectral imaging with infrared sensitive organic light emitting diode. Sci. Rep., 4, 5946(2014).

    Zong-Lu Che, Chang-Cun Yan, Xue-Dong Wang, Liang-Sheng Liao, "Organic near-infrared optoelectronic materials and devices: an overview," Adv. Photon. 6, 014001 (2024)
    Download Citation