• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 3, 293 (2024)
Jia-Hao SUN1, Ru-Min CHENG1, Kai GUO2、*, Jin-De YIN3, Du-An QING3, Ling LI1, and Pei-Guang YAN1
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering,School of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,,China
  • 2Institute of Systems Engineering,Academy of Military Science,Beijing 100141,China
  • 3Shenzhen Noonan Intelligent Co.,Ltd.,Shenzhen 518107,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.03.001 Cite this Article
    Jia-Hao SUN, Ru-Min CHENG, Kai GUO, Jin-De YIN, Du-An QING, Ling LI, Pei-Guang YAN. Characterization of visible-mid-infrared supercontinuum spectrum based on sandwiched silicon nitride waveguide[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 293 Copy Citation Text show less
    References

    [1] S BARBARA, Infrared Spectroscopy. Wiley Online Library(2015). https://doi.org/10.1002/0471238961.0914061810151405.a01.pub3

    [2] D J MOSS, R MORANDOTTI, A L GAETA et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature photonics, 7, 597-607(2013).

    [3] R R DOMENEGUETTI, Yun ZHAO, Xing-Chen JI et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. Optica, 8, 316-322(2021).

    [4] A D BRISTOW, N ROTENBERG, H M VAN DRIEL. Two-photon absorption and Kerr coefficients of silicon for 850–2200nm. Applied physics letters, 90(2007).

    [6] R HALIR, Y OKAWACHI, J S LEVY et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics letters, 37, 1685-1687(2012).

    [7] M A G PORCEL, F SCHEPERS, J P EPPING et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics express, 25, 1542-1554(2017).

    [8] Hai-Run GUO, Wen-Le WENG, Jun-Qiu LIU et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 7, 1181-1188(2020).

    [9] Yu-Xi FANG, Chang-Jing BAO, Zhi WANG et al. Multiple coherent dispersive waves generation in silicon nitride slot waveguide. Applied Physics Letters, 120(2022).

    [10] N SINGH, D D HUDSON, Y YU et al. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [11] Yi ZOU, S CHAKRAVARTY, Chi-Jui CHUNG et al. Mid-infrared silicon photonic waveguides and devices. Photonics Research, 6, 254-276(2018).

    [12] R HALIR, Y OKAWACHI, J S LEVY et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics letters, 37, 1685-1687(2012).

    [13] Liang-Hong YIN, Qiang LIN, G P AGRAWAL. Soliton fission and supercontinuum generation in silicon waveguides. Optics letters, 32, 391-393(2007).

    [14] F LEO, S P GORZA, J SAFIOUI et al. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Optics letters, 39, 3623-3626(2014).

    [16] C D SALZBERG, J J VILLA. Infrared refractive indexes of silicon germanium and modified selenium glass. JOSA, 47, 244-246(1957).

    [18] A BRUNER, D EGER, M B ORON et al. Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate. Optics letters, 28, 194-196(2003).

    [19] C CIRET, S P GORZA. Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides. JOSA B, 34, 1156-1162(2017).

    [20] J P EPPING, T HELLWIG, M HOEKMAN et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Optics express, 23, 19596-19604(2015).

    [21] Yu-Xi FANG, Chang-Jing BAO, Zhi WANG et al. Soliton-Induced Mid-Infrared Dispersive Wave in Horizontally-Slotted Si₃N₄ Waveguide. IEEE Access, 10, 62322-62329(2022).

    Jia-Hao SUN, Ru-Min CHENG, Kai GUO, Jin-De YIN, Du-An QING, Ling LI, Pei-Guang YAN. Characterization of visible-mid-infrared supercontinuum spectrum based on sandwiched silicon nitride waveguide[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 293
    Download Citation