• Acta Optica Sinica
  • Vol. 43, Issue 16, 1623002 (2023)
Fajun Xiao1、2、* and Jianlin Zhao1、2、**
Author Affiliations
  • 1School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • 2Key Laboratory of Light Field Regulation and Information Perception, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • show less
    DOI: 10.3788/AOS230854 Cite this Article Set citation alerts
    Fajun Xiao, Jianlin Zhao. Plasmonic Mode Control Based on Vector Beams[J]. Acta Optica Sinica, 2023, 43(16): 1623002 Copy Citation Text show less
    References

    [1] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 1, 641-648(2007).

    [2] Kravets V G, Kabashin A V, Barnes W L et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 118, 5912-5951(2018).

    [3] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing[J]. Nature Photonics, 3, 388-394(2009).

    [4] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010).

    [5] McFarland A D, Van Duyne R P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 3, 1057-1062(2003).

    [6] Mubeen S, Lee J, Singh N et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J]. Nature Nanotechnology, 8, 247-251(2013).

    [7] Okamoto K, Niki I, Shvartser A et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials, 3, 601-605(2004).

    [8] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [9] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 8, 14606(2017).

    [10] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light: Science & Applications, 10, 59(2021).

    [11] Luk'yanchuk B, Zheludev N I, Maier S A et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 9, 707-715(2010).

    [12] Neugebauer M, Bauer T, Banzer P et al. Polarization tailored light driven directional optical nanobeacon[J]. Nano Letters, 14, 2546-2551(2014).

    [13] Feng F, Si G Y, Min C J et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities[J]. Light: Science & Applications, 9, 95(2020).

    [14] Yang A K, Li Z Y, Knudson M P et al. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals[J]. ACS Nano, 9, 11582-11588(2015).

    [15] Kim M, Lee J H, Nam J M. Plasmonic photothermal nanoparticles for biomedical applications[J]. Advanced Science, 6, 1900471(2019).

    [16] Sámson Z L, MacDonald K F, De Angelis F et al. Metamaterial electro-optic switch of nanoscale thickness[J]. Applied Physics Letters, 96, 143105(2010).

    [17] Franklin D, Chen Y, Vazquez-Guardado A et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nature Communications, 6, 7337(2015).

    [18] Pan Y, Ding J P, Wang H T. Manipulation on novel vector optical fields: introduction, advances and applications[J]. Acta Optica Sinica, 39, 0126001(2019).

    [19] Li R F, Shi K B. High spatiotemporal imaging based on optical field engineering[J]. Acta Optica Sinica, 39, 0126010(2019).

    [20] Luo S Z, Chen Z, Li X K et al. Controlling quantum states of atoms and molecules by ultrafast femtosecond laser fields[J]. Acta Optica Sinica, 39, 0126007(2019).

    [21] Cai Y J, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam[J]. Optics Express, 15, 15480-15492(2007).

    [22] Cheng Z M, Xue S T, Lou Y C et al. Rotational Doppler shift tripling via third-harmonic generation of spatially structured light in a quasi-periodically poled crystal[J]. Optica, 10, 20-25(2023).

    [23] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).

    [24] Markel V A. Antisymmetrical optical states[J]. Journal of the Optical Society of America B, 12, 1783-1791(1995).

    [25] Bergman D J, Stroud D. Theory of resonances in the electromagnetic scattering by macroscopic bodies[J]. Physical Review B, 22, 3527-3539(1980).

    [26] Fung K H, Kumar A, Fang N X. Electron-photon scattering mediated by localized plasmons: a quantitative analysis by eigen-response theory[J]. Physical Review B, 89, 045408(2014).

    [27] Fung K H, Chan C T. Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis[J]. Optics Letters, 32, 973-975(2007).

    [28] Man Z S, Du L P, Min C J et al. Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states[J]. Applied Physics Letters, 105, 011110(2014).

    [29] Weng X Y, Du L P, Yang A P et al. Generating arbitrary order cylindrical vector beams with inherent transform mechanism[J]. IEEE Photonics Journal, 9, 6100208(2017).

    [30] Sancho-Parramon J, Jelovina D. Boosting Fano resonances in single layered concentric core-shell particles[J]. Nanoscale, 6, 13555-13564(2014).

    [31] Panaro S, Nazir A, Liberale C et al. Dark to bright mode conversion on dipolar nanoantennas: a symmetry-breaking approach[J]. ACS Photonics, 1, 310-314(2014).

    [32] Knight M W, Wu Y P, Lassiter J B et al. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle[J]. Nano Letters, 9, 2188-2192(2009).

    [33] Krasavin A V, Segovia P, Dubrovka R et al. Generalization of the optical theorem: experimental proof for radially polarized beams[J]. Light: Science & Applications, 7, 36(2018).

    [34] Bag A, Neugebauer M, Mick U et al. Towards fully integrated photonic displacement sensors[J]. Nature Communications, 11, 2915(2020).

    [35] Xiao F J, Wang G L, Gan X T et al. Selective excitation of a three-dimensionally oriented single plasmonic dipole[J]. Photonics Research, 7, 693-698(2019).

    [36] Scheuer J. Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation[J]. Optics Express, 19, 25454-25464(2011).

    [37] Gómez D E, Teo Z Q, Altissimo M et al. The dark side of plasmonics[J]. Nano Letters, 13, 3722-3728(2013).

    [38] Herzog J B, Knight M W, Li Y J et al. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions[J]. Nano Letters, 13, 1359-1364(2013).

    [39] Celebrano M, Wu X F, Baselli M et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation[J]. Nature Nanotechnology, 10, 412-417(2015).

    [40] Wu C, Khanikaev A B, Adato R et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 11, 69-75(2012).

    [41] Hakala T K, Rekola H T, Väkeväinen A I et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice[J]. Nature Communications, 8, 13687(2017).

    [42] Schmidt F P, Ditlbacher H, Hohenester U et al. Dark plasmonic breathing modes in silver nanodisks[J]. Nano Letters, 12, 5780-5783(2012).

    [43] Yang S C, Kobori H, He C L et al. Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes[J]. Nano Letters, 10, 632-637(2010).

    [44] Shang W Y, Xiao F J, Zhu W R et al. Characterizing localized surface plasmon resonances using focused radially polarized beam[J]. Applied Optics, 58, 5812-5816(2019).

    [45] Yanai A, Grajower M, Lerman G M et al. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation[J]. ACS Nano, 8, 4969-4974(2014).

    [46] Bao Y J, Zhu X, Fang Z Y. Plasmonic toroidal dipolar response under radially polarized excitation[J]. Scientific Reports, 5, 11793(2015).

    [47] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 96, 113002(2006).

    [48] Zhang L, Meng C, Yang H et al. Azimuthal vector beam illuminating plasmonic tips circular cluster for surface-enhanced Raman spectroscopy[J]. Chinese Optics Letters, 21, 033603(2023).

    [49] Xiao F J, Ren Y X, Shang W Y et al. Sub-10  nm particle trapping enabled by a plasmonic dark mode[J]. Optics Letters, 43, 3413-3416(2018).

    [50] Zhang J C, Lu F F, Zhang W D et al. Optical trapping of single nano-size particles using a plasmonic nanocavity[J]. Journal of Physics: Condensed Matter, 32, 475301(2020).

    [51] Xiao F J, Shang W Y, Zhu W R et al. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 6, 157-161(2018).

    [52] Prodan E, Radloff C, Halas N J et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 302, 419-422(2003).

    [53] Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles[J]. The Journal of Chemical Physics, 120, 5444-5454(2004).

    [54] Joe Y S, Satanin A M, Kim C S. Classical analogy of Fano resonances[J]. Physica Scripta, 74, 259-266(2006).

    [55] Deng T S, Parker J, Yifat Y et al. Dark plasmon modes in symmetric gold nanoparticle dimers illuminated by focused cylindrical vector beams[J]. The Journal of Physical Chemistry C, 122, 27662-27672(2018).

    [56] Volpe G, Molina-Terriza G, Quidant R. Deterministic subwavelength control of light confinement in nanostructures[J]. Physical Review Letters, 105, 216802(2010).

    [57] Sancho-Parramon J, Bosch S. Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams[J]. ACS Nano, 6, 8415-8423(2012).

    [58] Bao Y J, Hu Z J, Li Z W et al. Magnetic plasmonic fano resonance at optical frequency[J]. Small, 11, 2177-2181(2015).

    [59] Xiao F J, Wang G L, Shang W Y et al. Radial breathing modes coupling in plasmonic molecules[J]. Optics Express, 27, 5116-5124(2019).

    [60] Xiao F J, Zhang J C, Yu W X et al. Reversible optical binding force in a plasmonic heterodimer under radially polarized beam illumination[J]. Optics Express, 28, 3000-3008(2020).

    [61] Xiao F J, Cao S Y, Shang W Y et al. Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer[J]. Optics Letters, 44, 3813-3816(2019).

    [62] Shang W Y, Xiao F J, Zhu W R et al. Fano resonance with high local field enhancement under azimuthally polarized excitation[J]. Scientific Reports, 7, 1049(2017).

    [63] Fu Y H, Kuznetsov A I, Miroshnichenko A E et al. Directional visible light scattering by silicon nanoparticles[J]. Nature Communications, 4, 1527(2013).

    [64] Kerker M, Wang D S, Giles C L. Electromagnetic scattering by magnetic spheres[J]. Journal of the Optical Society of America, 73, 765-767(1983).

    [65] Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 4, 312-315(2010).

    [66] Vercruysse D, Sonnefraud Y, Verellen N et al. Unidirectional side scattering of light by a single-element nanoantenna[J]. Nano Letters, 13, 3843-3849(2013).

    [67] Shegai T, Chen S, Miljković V D et al. A bimetallic nanoantenna for directional colour routing[J]. Nature Communications, 2, 481(2011).

    [68] Shegai T, Johansson P, Langhammer C et al. Directional scattering and hydrogen sensing by bimetallic Pd–Au nanoantennas[J]. Nano Letters, 12, 2464-2469(2012).

    [69] Wang M Y, Li M Q, Jiang S et al. Plasmonics meets super-resolution microscopy in biology[J]. Micron, 137, 102916(2020).

    [70] Shang W Y, Xiao F J, Zhu W R et al. Unidirectional scattering exploited transverse displacement sensor with tunable measuring range[J]. Optics Express, 27, 4944-4955(2019).

    [71] Zang T Y, Zang H F, Xi Z et al. Asymmetric excitation of surface plasmon polaritons via paired slot antennas for angstrom displacement sensing[J]. Physical Review Letters, 124, 243901(2020).

    [72] Zang H F, Xi Z, Zhang Z Y et al. Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface[J]. Science Advances, 8, eadd1973(2022).

    [73] Lu F F, Zhang W D, Zhang L et al. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam[J]. Plasmonics, 14, 1593-1599(2019).

    [74] Giordani T, Suprano A, Polino E et al. Machine learning-based classification of vector vortex beams[J]. Physical Review Letters, 124, 160401(2020).

    [75] Hu H F, Gan Q Q, Zhan Q W. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects[J]. Physical Review Letters, 122, 223901(2019).

    [76] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [77] Bauer T, Banzer P, Karimi E et al. Observation of optical polarization Möbius strips[J]. Science, 347, 964-966(2015).

    [78] Li G C, Lei D Y, Qiu M et al. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity[J]. Nature Communications, 12, 4326(2021).

    [79] Vento V, Roelli P, Verlekar S et al. Mode-specific coupling of nanoparticle-on-mirror cavities with cylindrical vector beams[J]. Nano Letters, 23, 4885-4892(2023).

    Fajun Xiao, Jianlin Zhao. Plasmonic Mode Control Based on Vector Beams[J]. Acta Optica Sinica, 2023, 43(16): 1623002
    Download Citation