• Nano-Micro Letters
  • Vol. 16, Issue 1, 133 (2024)
Wenxiao Wang1、2、3、†, Yaqi Wang1、†, Feifei Yin2、3, Hongsen Niu2、3, Young-Kee Shin5, Yang Li1、4、*, Eun-Seong Kim2、3、**, and Nam-Young Kim2、3、***
Author Affiliations
  • 1School of Information Science and Engineering, University of Jinan, Jinan 250022, People’s Republic of China
  • 2RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul 139-701, South Korea
  • 3Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul 139-701, South Korea
  • 4School of Microelectronics, Shandong University, Jinan 250101, People’s Republic of China
  • 5Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
  • show less
    DOI: 10.1007/s40820-024-01338-z Cite this Article
    Wenxiao Wang, Yaqi Wang, Feifei Yin, Hongsen Niu, Young-Kee Shin, Yang Li, Eun-Seong Kim, Nam-Young Kim. Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware[J]. Nano-Micro Letters, 2024, 16(1): 133 Copy Citation Text show less
    References

    [1] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

    [2] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang et al., Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019).

    [3] C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, e1902434 (2020).

    [4] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song et al., Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).

    [5] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    [6] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    [7] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    [8] E. Peterson, A. Lavin, Physical computing for materials acceleration platforms. Matter 5, 3586–3596 (2022).

    [9] K. Hippalgaonkar, Q. Li, X. Wang, J.W. Fisher III., J. Kirkpatrick et al., Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023).

    [10] Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5, 794–810 (2021).

    [11] J.-Q. Yang, R. Wang, Y. Ren, J.-Y. Mao, Z.-P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, e2003610 (2020).

    [12] C. Eckel, J. Lenz, A. Melianas, A. Salleo, R.T. Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973–978 (2022).

    [13] B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    [14] Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 120, 3941–4006 (2020).

    [15] J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022).

    [16] S. Najmaei, A.L. Glasmann, M.A. Schroeder, W.L. Sarney, M.L. Chin et al., Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Mater. Today 59, 80–106 (2022).

    [17] S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13, 2811 (2022).

    [18] L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).

    [19] M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur et al., First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445–1448 (2018).

    [20] Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate. Adv. Mater. 32, e2002638 (2020).

    [21] J. Hochstetter, R. Zhu, A. Loeffler, A. Diaz-Alvarez, T. Nakayama et al., Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 (2021).

    [22] W. Schultz, A. Dickinson, Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    [23] R.A. Poldrack, J. Clark, E.J. Paré-Blagoev, D. Shohamy, J. Creso Moyano et al., Interactive memory systems in the human brain. Nature 414, 546–550 (2001).

    [24] H. Zhang, H. Zeng, A. Priimagi, O. Ikkala, Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning. Adv. Mater. 32, 1906619 (2020).

    [25] Z. Wang, C. Li, W. Song, M. Rao, D. Belkin et al., Reinforcement learning with analogue memristor arrays. Nat. Electron. 2, 115–124 (2019).

    [26] J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023).

    [27] K. He, Y. Liu, J. Yu, X. Guo, M. Wang et al., Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691–9700 (2022).

    [28] J. Sun, G. Han, Z. Zeng, Y. Wang, Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern. 50, 2935–2945 (2020).

    [29] A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4, 467–479 (2022).

    [30] Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang et al., Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022).

    [31] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008).

    [32] S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    [33] M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux–charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197–2206 (2020).

    [34] C. Wu, T.W. Kim, T. Guo, F. Li, D.U. Lee et al., Mimicking classical conditioning based on a single flexible memristor. Adv. Mater. 29, 1602890 (2017).

    [35] S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019).

    [36] M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch et al., An electronic version of pavlov’s dog. Adv. Funct. Mater. 22, 2744–2749 (2012).

    [37] W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2170247 (2021).

    [38] K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021).

    [39] W. Wang, S. Gao, Y. Wang, Y. Li, W. Yue et al., Advances in emerging photonic memristive and memristive-like devices. Adv. Sci. 9, e2105577 (2022).

    [40] M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa et al., Experimental photonic quantum memristor. Nat. Photonics 16, 318–323 (2022).

    [41] K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    [42] S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13, 2634–2642 (2019).

    [43] D. Kumar, A. Saleem, L.B. Keong, Y.H. Wang, T.-Y. Tseng, Light induced RESET phenomenon in invisible memristor for photo sensing. IEEE Electron Device Lett. 43, 1069–1072 (2022).

    [44] Y. Pei, L. Yan, Z. Wu, J. Lu, J. Zhao et al., Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 15, 17319–17326 (2021).

    [45] W. Wang, Y. Li, W. Yue, S. Gao, C. Zhang et al., Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE Trans. Electron Devices 67, 4884–4890 (2020).

    [46] T.J. Jacobsson, S. Viarbitskaya, E. Mukhtar, T. Edvinsson, A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots. Phys. Chem. Chem. Phys. 16, 13849–13857 (2014).

    [47] B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009).

    [48] Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018).

    [49] M. Rajabi, S. Shogh, A. Iraji zad, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. J. Lumin. 157, 235–242 (2015).

    [50] S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018).

    [51] Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal In-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).

    [52] M. Xiao, K.P. Musselman, W.W. Duley, N.Y. Zhou, Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-Micro Lett. 9, 15 (2016).

    [53] W. Liu, Y. Yun, M. Li, J. Mao, C. Li et al., Preparation of hollow ceramic photocatalytic membrane grafted with silicon-doped TiO2 nanorods and conversion of high-concentration NO. Chem. Eng. J. 437, 135261 (2022).

    [54] M.S. Irshad, A. Abbas, H.H. Qazi, M.H. Aziz, M. Shah et al., Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM). Mater. Res. Express 6, 076311 (2019).

    [55] P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018).

    [56] W. Wang, R. Wang, T. Shi, J. Wei, R. Cao et al., A self-rectification and quasi-linear analogue memristor for artificial neural networks. IEEE Electron Device Lett. 40, 1407–1410 (2019).

    [57] J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. (2018).

    [58] S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022).

    [59] Y. Lin, J. Liu, J. Shi, T. Zeng, X. Shan et al., Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Appl. Phys. Lett. 118, 103502 (2021).

    [60] K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022).

    [61] T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011).

    [62] P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019).

    [63] Q. Liu, S. Gao, Y. Li, W. Yue, C. Zhang et al., HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing. Adv. Mater. Technol. 8, 2201143 (2023).

    Wenxiao Wang, Yaqi Wang, Feifei Yin, Hongsen Niu, Young-Kee Shin, Yang Li, Eun-Seong Kim, Nam-Young Kim. Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware[J]. Nano-Micro Letters, 2024, 16(1): 133
    Download Citation