• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0900002 (2024)
Yu Li1, Yong Huang2、*, Yuan Li3, and Hao Jiang4
Author Affiliations
  • 1School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
  • 2Guangdong Industrial Training Center,Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
  • 3School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, Guangdong, China
  • 4School of Automation,Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
  • show less
    DOI: 10.3788/LOP231080 Cite this Article Set citation alerts
    Yu Li, Yong Huang, Yuan Li, Hao Jiang. Research Progress of Aluminum Gallium Nitride Based Deep Ultraviolet Light Emitting Diodes[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900002 Copy Citation Text show less
    References

    [1] Chen Y X, Ben J W, Xu F J et al. Review on the progress of AlGaN-based ultraviolet light-emitting diodes[J]. Fundamental Research, 1, 717-734(2021).

    [2] Zhu T, Fu S J, Xie W et al. UVC sterilization mechanism and influencing factors[J]. Chinese Journal of Lasers, 50, 0907209(2023).

    [3] Hu A. Main technical issues and development direction of UVC (short ultraviolet/deep ultraviolet) LEDs[EB/OL]. https:?∥www.ednchina.com/news/a6875.htm

    [4] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).

    [5] Takano T, Mino T, Jun S K et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency[J]. Applied Physics Express, 10, 031002(2017).

    [6] Narukawa Y, Ichikawa M, Sanga D et al. White light emitting diodes with super-high luminous efficacy[J]. Journal of Physics D: Applied Physics, 43, 354002(2010).

    [7] Harris J S, Baker J N, Gaddy B E et al. On compensation in Si-doped AlN[J]. Applied Physics Letters, 112, 152101(2018).

    [8] Cantu P, Keller S, Mishra U K et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films[J]. Applied Physics Letters, 82, 3683-3685(2003).

    [9] Zhu S X, Yan J C, Zhang Y et al. The effect of delta-doping on Si-doped Al rich n-AlGaN on AlN template grown by MOCVD[J]. Physica Status Solidi C, 11, 466-468(2014).

    [10] Hasan M S, Mehedi I M, Reza S M F et al. Analytical investigation of activation energy for Mg-doped p-AlGaN[J]. Optical and Quantum Electronics, 52, 1-10(2020).

    [11] Aoyagi Y, Takeuchi M, Iwai S et al. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition[J]. Applied Physics Letters, 99, 112110(2011).

    [12] Wang J M, Wang M X, Xu F J et al. Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping[J]. Light: Science & Applications, 11, 71(2022).

    [13] Zheng T C, Lin W, Liu R et al. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices[J]. Scientific Reports, 6, 21897(2016).

    [14] Jiang K, Sun X J, Shi Z M et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides[J]. Light: Science & Applications, 10, 69(2021).

    [15] Simon J, Protasenko V, Lian C X et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 327, 60-64(2010).

    [16] Cao Y W, Lv Q J, Yang T P et al. Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer[J]. Chinese Physics B, 32, 058503(2023).

    [17] Chen Y D, Wu H L, Han E Z et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping[J]. Applied Physics Letters, 106, 162102(2015).

    [18] Zhang J, Tian W, Wu F et al. The advantages of AlGaN-based UV-LEDs inserted with a p-AlGaN layer between the EBL and active region[J]. IEEE Photonics Journal, 5, 1600310(2013).

    [19] Zhang Z H, Kou J Q, Chen S W H et al. Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes[J]. Photonics Research, 7, B1-B6(2019).

    [20] Ye W T, Cheng Z J, Ren Z Y et al. Efficient carrier confinement in AlGaN-based deep-ultraviolet light-emitting diodes with a composition-graded electron-blocking layer[J]. Physica Status Solidi (a), 220, 2200674(2023).

    [21] Hirayama H, Tsukada Y, Maeda T et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Applied Physics Express, 3, 031002(2010).

    [22] Du P, Shi L, Liu S et al. High-performance AlGaN-based deep ultraviolet light-emitting diodes with different types of InAlGaN/AlGaN electron blocking layer[J]. Japanese Journal of Applied Physics, 60, 092001(2021).

    [23] Dai Q, Zhang X, Wu Z L et al. High performance of a non-polar AlGaN-based DUV-LED with a quaternary superlattice electron blocking layer[J]. Journal of Electronic Materials, 51, 5389-5394(2022).

    [24] Jamil T, Usman M. Optimized carrier confinement in deep-ultraviolet light-emitting diodes with AlInGaN/AlInN superlattice electron blocking layer[J]. Materials Science and Engineering: B, 278, 115638(2022).

    [25] Zhang K M, Liao F B, Lian M X et al. Performance enhancement of deep-ultraviolet LEDs by using quaternary AlInGaN polarization-engineered multiple-symmetrical-stair quantum barriers without electron blocking layer[J]. Applied Optics, 61, 4494-4499(2022).

    [26] Yin R M, Jia W, Dong H L et al. Effect of electrostatic field inversion in 101¯1-plane InGaN quantum wells on photoelectric properties of blue light-emitting diodes[J]. Acta Optica Sinica, 42, 2125001(2022).

    [27] Tsai C L, Liu H H, Chen J W et al. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template[J]. Solid-State Electronics, 138, 84-88(2017).

    [28] Sun X J, Li D B, Chen Y R et al. In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition[J]. CrystEngComm, 15, 6066-6073(2013).

    [29] Zhang Y H, Yang J, Zhao D G et al. High-quality AlN growth on flat sapphire at relatively low temperature by crystal island shape control method[J]. Applied Surface Science, 606, 154919(2022).

    [30] Streicher I, Leone S, Kirste L et al. Effect of V/III ratio and growth pressure on surface and crystal quality of AlN grown on sapphire by metal-organic chemical vapor deposition[J]. Journal of Vacuum Science & Technology A, 40, 032702(2022).

    [31] Rahman M N A, Sulaiman A F, Khudus M I M A et al. Effects of pulse cycle number on the quality of pulsed atomic-layer epitaxy AlN films grown via metal organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 58, SC1037(2019).

    [32] Hirayama H, Fujikawa S, Noguchi N et al. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire[J]. Physica Status Solidi (a), 206, 1176-1182(2009).

    [33] Long H L, Dai J N, Zhang Y et al. High quality 10.6 μm AlN grown on pyramidal patterned sapphire substrate by MOCVD[J]. Applied Physics Letters, 114, 042101(2019).

    [34] Liu S F, Yuan Y, Sheng S S et al. Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD[J]. Journal of Semiconductors, 42, 122804(2021).

    [35] Xing K, Xie G X, Cheng X Y et al. Non-polar a-plane AlN epitaxial films on r-plane sapphire with greatly reduced defect densities obtained by high-temperature annealing[J]. Journal of Crystal Growth, 597, 126855(2022).

    [36] Fang G T, Zhang M, Xiong D Y. On the near-pole hole insertion layer and the far-pole hole insertion layer for multi-quantum-well deep ultraviolet light-emitting diodes[J]. Nanomaterials, 12, 629(2022).

    [37] Jain B, Velpula R T, Patel M et al. Improved performance of electron blocking layer free AlGaN deep ultraviolet light-emitting diodes using graded staircase barriers[J]. Micromachines, 12, 334(2021).

    [38] Du P, Shi L, Liu S et al. Polarization-doped quantum wells with graded Al-composition for highly efficient deep ultraviolet light-emitting diodes[J]. Micro and Nanostructures, 163, 107150(2022).

    [39] Tian K K, Chen Q, Chu C S et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 12, 1700346(2018).

    [40] Liu K Z, Chen L, Luo T A et al. Implementation of electron restriction layer in n-AlGaN toward balanced carrier distribution in deep ultraviolet light-emitting-diodes[J]. Applied Physics Letters, 121, 241105(2022).

    [41] Cao Y W, Lv Q J, Yang T P et al. Improved hole injection and carrier distribution in AlGaN deep-ultraviolet light-emitting diodes with bidirectional-staircase-barrier structure[J]. Journal of Luminescence, 257, 119699(2023).

    [42] Wang Q, Zhang K, Li C G et al. Modulating carrier distribution for efficient AlGaN-based deep ultraviolet light-emitting diodes by introducing an asymmetric quantum well[J]. Journal of Electronic Materials, 50, 2643-2648(2021).

    [43] Zhang S, Wu F, Wang S et al. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet LED via a novel honeycomb hole-shaped structure[J]. IEEE Transactions on Electron Devices, 66, 2997-3002(2019).

    [44] Chen Y F, Che J M, Chu C S et al. Balanced resistivity in n-AlGaN layer to increase the current uniformity for AlGaN-based DUV LEDs[J]. IEEE Photonics Technology Letters, 34, 1065-1068(2022).

    [45] Wang Y, Zhang Z H, Guo L et al. Calculating the effect of AlGaN dielectric layers in a polarization tunnel junction on the performance of AlGaN-based deep-ultraviolet light-emitting diodes[J]. Nanomaterials, 11, 3328(2021).

    [46] Wan H, Zhou S, Lan S et al. Light extraction efficiency optimization of AlGaN-based deep-ultraviolet light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 9, 046002(2020).

    [47] Zhang N, Xu F J, Lang J et al. Improved light extraction efficiency of AlGaN deep-ultraviolet light emitting diodes combining Ag-nanodots/Al reflective electrode with highly transparent p-type layer[J]. Optics Express, 29, 2394-2401(2021).

    [48] Wang L B, Xu F J, Lang J et al. Transparent p-type layer with highly reflective Rh/Al p-type electrodes for improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes[J]. Japanese Journal of Applied Physics, 62, 030904(2023).

    [49] Du P W, Cheng Z Y. Enhancing light extraction efficiency of vertical emission of AlGaN nanowire light emitting diodes with photonic crystal[J]. IEEE Photonics Journal, 11, 1600109(2019).

    [50] Shan M C, Guo C Y, Zhao Y M et al. Nanoporous AlGaN distributed Bragg reflectors for deep ultraviolet emission[J]. ACS Applied Nano Materials, 5, 10081-10089(2022).

    [51] Lee T H, Park T H, Shin H W et al. Smart wide-bandgap omnidirectional reflector as an effective hole-injection electrode for deep-UV light-emitting diodes[J]. Advanced Optical Materials, 8, 1901430(2020).

    [52] Khizar M, Fan Z Y, Kim K H et al. Nitride deep-ultraviolet light-emitting diodes with microlens array[J]. Applied Physics Letters, 86, 173504(2005).

    [53] Liang R L, Dai J N, Xu L L et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays[J]. IEEE Transactions on Electron Devices, 65, 2498-2503(2018).

    [54] Wang Y, Lv Z X, Qi S L et al. Enhancement of light extraction efficiency of UVC-LED by SiO2 antireflective film[J]. Crystals, 12, 928(2022).

    [55] Qian Y Z, Liao Z F, Lv Z X et al. Enhanced performance of 275-nm AlGaN-based deep-ultraviolet LEDs via internal-roughed sapphire and SiO2-antireflection film[J]. Optics Letters, 48, 1072-1075(2023).

    [56] Ryu H Y, Choi I G, Choi H S et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 6, 062101(2013).

    [57] Zhang J, Chang L, Zhao Z Q et al. Different scattering effect of nano-patterned sapphire substrate for TM- and TE-polarized light emitted from AlGaN-based deep ultraviolet light-emitting diodes[J]. Optical Materials Express, 11, 729-739(2021).

    [58] Hu X P, Cai J H, Ye Y Y et al. Study on simulation model of Gan-based Micro-LED with high light efficiency[J]. Acta Optica Sinica, 42, 1525001(2022).

    [59] Yun J, Hirayama H. Investigation of light-extraction efficiency of flip-chip AlGaN-based deep-ultraviolet light-emitting diodes adopting AlGaN metasurface[J]. IEEE Photonics Journal, 13, 2700313(2021).

    [60] Chen Q, Zhang H X, Dai J N et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle[J]. IEEE Photonics Journal, 10, 6100807(2018).

    [61] Peng K W, Tseng M C, Lin S H et al. Sidewall geometric effect on the performance of AlGaN-based deep-ultraviolet light-emitting diodes[J]. Optics Express, 30, 47792-47800(2022).

    [62] Wang T, Lai W C, Sie S Y et al. AlGaN-based deep ultraviolet light-emitting diodes with thermally oxidized AlxGa2-xO3 sidewalls[J]. ACS Omega, 7, 15027-15036(2022).

    [63] Li Y, Zhu Y H, Wang M Y et al. Enhanced TE-polarized emission of AlGaN-based deep-ultraviolet light emitting diodes by using an InAlN insertion layer[J]. Japanese Journal of Applied Physics, 58, 114001(2019).

    [64] Long H L, Wang S A, Dai J N et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics Express, 26, 680-686(2018).

    Yu Li, Yong Huang, Yuan Li, Hao Jiang. Research Progress of Aluminum Gallium Nitride Based Deep Ultraviolet Light Emitting Diodes[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900002
    Download Citation