• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 1031 (2023)
Yiman DONG and Zhan’ao TAN*
Author Affiliations
  • Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • show less
    DOI: 10.15541/jim20230116 Cite this Article
    Yiman DONG, Zhan’ao TAN. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite[J]. Journal of Inorganic Materials, 2023, 38(9): 1031 Copy Citation Text show less
    References

    [1] W SHOCKLEY, H J QUEISSER. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510(1961).

    [2] Y WANG, R LIN, X WANG et al. Oxidation-resistant all- perovskite tandem solar cells in substrate configuration. Nature Communications, 14:, 1819(2023).

    [3] M JAYSANKAR, B A L RAUL, J BASTOS et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 4, 259(2018).

    [4] H HU, S MOGHADAMZADEH, R AZMI et al. Sn-Pb mixed perovskites with fullerene-derivative interlayers for efficient four-terminal all-perovskite tandem solar cells. Advanced Functional Materials, 32, 2107650(2021).

    [5] M JAYSANKAR, W QIU, EERDEN M VAN et al. Four-terminal perovskite/silicon multijunction solar modules. Advanced Energy Materials, 7, 1602807(2017).

    [6] S KIM, T T TRINH, J PARK et al. Over 30% efficiency bifacial 4-terminal perovskite-heterojunction silicon tandem solar cells with spectral albedo. Scientific Reports, 15524(2021).

    [7] Y CUI, H YAO, J ZHANG et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Advanced Materials, 32, 1908205(2020).

    [8] M ABDEL-SHAKOUR, T H CHOWDHURY, K MATSUISHI et al. High‐efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Solar RRL, 5, 2000606(2020).

    [9] H LIU, L WANG, R LI et al. Modulated crystallization and reduced VOC deficit of mixed lead-tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Letters, 6, 2907(2021).

    [10] T GUO, H WANG, W HAN et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy, 107298(2022).

    [11] J WERNER, C H WENG, A WALTER et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. The Journal of Physical Chemistry Letters, 7, 161(2016).

    [12] K LANG, Q GUO, Z HE et al. High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. The Journal of Physical Chemistry Letters, 11, 9596(2020).

    [13] P WANG, W LI, O J SANDBERG et al. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21. Nano Letters, 21, 7845(2021).

    [14] R LIN, J XU, M WEI et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603, 73(2022).

    [15] C WANG, W SHAO, J LIANG et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small, 18, 2204081(2022).

    [16] A RAJAGOPAL, Z YANG, S B JO et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Advanced Materials, 29, 1702140(2017).

    [17] M JOŠT, E KÖHNEN, A B MORALES-VILCHES et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy & Environmental Science, 11, 3511(2018).

    [18] C C CHEN, S H BAE, W H CHANG et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2, 203(2015).

    [19] S K HAU, H L YIP, J ZOU et al. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Organic Electronics, 10, 1401(2009).

    [20] T AMERI, G DENNLER, C WALDAUF et al. Fabrication, optical modeling, and color characterization of semitransparent bulk- heterojunction organic solar cells in an inverted structure. Advanced Functional Materials, 20, 1592(2010).

    [21] C K CHO, W J HWANG, K EUN et al. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells, 95, 3269(2011).

    [22] Y KIM, J LEE, H KANG et al. Controlled electro-spray deposition of highly conductive PEDOT:PSS films. Solar Energy Materials and Solar Cells, 39(2012).

    [23] Z YU, X CHEN, S P HARVEY et al. Gradient doping in Sn-Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Advanced Materials, 34, 2110351(2022).

    [24] Z YU, J WANG, B CHEN et al. Solution-processed ternary tin (II) alloy as hole-transport layer of Sn-Pb perovskite solar cells for enhanced efficiency and stability. Advanced Materials, 34, 2205769(2022).

    [25] D ZHAO, C CHEN, C WANG et al. Efficient two-terminal all- perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 3, 1093(2018).

    [26] K XIAO, R LIN, Q HAN et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 5, 870(2020).

    [27] K S CHEN, J F SALINAS, H L YIP et al. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy & Environmental Science, 5, 9551(2012).

    [28] Z WANG, C ZHANG, D CHEN et al. ITO-free semitransparent organic solar cells based on silver thin film electrodes. International Journal of Photoenergy, 2014, 209206(2014).

    [29] X LI, H MENG, F SHEN et al. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes and Pigments, 196(2019).

    [30] X CHEN, Z JIA, Z CHEN et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 4, 1594(2020).

    [31] X GU, X LAI, Y ZHANG et al. Organic solar cell with efficiency over 20% and VOC exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Advanced Science, 9, 2200445(2022).

    [32] R LIN, K XIAO, Z QIN et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nature Energy, 4, 864(2019).

    [33] H LI, Y WANG, H GAO et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight, 2, 21(2022).

    [34] L LI, Y WANG, X WANG et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 7, 708(2022).

    [35] Q JIANG, J TONG, R A SCHEIDT et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science, 378, 1295(2022).

    [36] G E EPERON, T LEIJTENS, K A BUSH et al. Perovskite- perovskite tandem photovoltaics with optimized band gaps. Science, 354, 861(2016).

    [37] H GAO, Q LU, K XIAO et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Solar RRL, 5, 2100814(2021).

    [38] B CHEN, Z J YU, S MANZOOR et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 4, 850(2020).

    [39] L MAO, T YANG, H ZHANG et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Advanced Materials, 34, 2206193(2022).

    [40] W CHEN, Y ZHU, J XIU et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 7, 229(2022).

    [41] BASTIANI M DE, R JALMOOD, J LIU et al. Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon- surface texture on perovskite properties. Advanced Functional Materials, 33, 2205557(2022).

    [42] K SVEINBJÖRNSSON, B LI, S MARIOTTI et al. Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells. ACS Energy Letters, 7, 2654(2022).

    [43] J ZHENG, H WEI, Z YING et al. Balancing charge‐carrier transport and recombination for perovskite/TOPCon tandem solar cells with double-textured structures. Advanced Energy Materials, 13, 2203006(2022).

    [44] Z YU, Z YANG, Z NI et al. Simplified interconnection structure based on C-60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 5, 657(2020).

    [45] K O BRINKMANN, T BECKER, F ZIMMERMANN et al. Perovskite-organic tandem solar cells with indium oxide interconnect. Nature, 604, 280(2022).

    [46] R PO, C CARBONERA, A BERNARDI et al. Polymer- and carbon-based electrodes for polymer solar cells: toward low-cost, continuous fabrication over large area. Solar Energy Materials and Solar Cells, 97(2012).

    [47] F JIANG, T LIU, B LUO et al. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 4, 1208(2016).

    [48] R SHENG, M T HÖRANTNER, Z WANG et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. The Journal of Physical Chemistry C, 121, 27256(2017).

    [49] X WU, Y LIU, F QI et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 9, 19778(2021).

    [50] S QIN, C LU, Z JIA et al. Constructing monolithic perovskite/ organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Advanced Materials, 34, 2108829(2022).

    [51] Y DING, Q GUO, Y GENG et al. A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today, 101586(2022).

    [52] Y M XIE, Q YAO, Z ZENG et al. Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Advanced Functional Materials, 32, 2112126(2022).

    [53] K DATTA, J WANG, D ZHANG et al. Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses. Advanced Materials, 34, 2110053(2022).

    [54] Y M XIE, T NIU, Q YAO et al. Understanding the role of interconnecting layer on determining monolithic perovskite/ organic tandem device carrier recombination properties. Journal of Energy Chemistry, 12(2022).

    [55] J TONG, Q JIANG, A J FERGUSON et al. Carrier control in Sn-Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 7, 642(2022).

    [56] H CHEN, A MAXWELL, C LI et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 613, 676(2023).

    [57] M A MAHMUD, J ZHENG, S TANG et al. Water-free, conductive hole transport layer for reproducible perovskite-perovskite tandems with record fill factor. ACS Energy Letters, 8, 21(2022).

    [58] Q YAO, Y M XIE, Y ZHOU et al. Dual sub-cells modification enables high‐efficiency n-i-p type monolithic perovskite/ organic tandem solar cells. Advanced Functional Materials, 33, 202212599(2023).

    [59] B CHEN, Z YU, K LIU et al. Grain engineering for perovskite/ silicon monolithic tandem solar cells with efficiency of 25.4%. Joule, 3, 177(2019).

    [60] P WU, J WEN, Y WANG et al. Efficient and thermally stable all-perovskite tandem solar cells using all-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Advanced Energy Materials, 12, 2202948(2022).

    [61] J ROGER, L K SCHORN, M HEYDARIAN et al. Laminated monolithic perovskite/silicon tandem photovoltaics. Advanced Energy Materials, 12, 2200961(2022).

    [62] B YU, F TANG, Y YANG et al. Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate. Advanced Materials, 35, 2202447(2023).

    [63] P TOCKHORN, J SUTTER, A CRUZ et al. Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nature Nanotechnology, 17, 1214(2022).

    [64] X LUO, H LUO, H LI et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Advanced Materials, 35, 2207883(2023).

    Yiman DONG, Zhan’ao TAN. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite[J]. Journal of Inorganic Materials, 2023, 38(9): 1031
    Download Citation