• Journal of Inorganic Materials
  • Vol. 38, Issue 2, 113 (2023)
Yan LIU*, Keying ZHANG, Tianyu LI, Bo ZHOU, Xuejian LIU, and Zhengren HUANG
DOI: 10.15541/jim20220400 Cite this Article
Yan LIU, Keying ZHANG, Tianyu LI, Bo ZHOU, Xuejian LIU, Zhengren HUANG. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend[J]. Journal of Inorganic Materials, 2023, 38(2): 113 Copy Citation Text show less
References

[1] Z R LI, W GU, J C FENG. Research status of ceramic and metal joining. Welding, 55(2008).

[2] K Q SHI, M LI, D D ZHU et al. Research progress of brazing between ceramic and metal. Thermal processing, 7(2021).

[3] R B JIAO, S F RONG, H B LI et al. Current situation and prospect of advanced ceramics and metal connections. Foshan Ceramics, 6(2018).

[4] S S CONG. State-of-the-art bonding methods for ceramics and metals. Bonding, 21(1983).

[5] W FU, X G SONG, Y X ZHAO et al. Indirect brazing of Al2O3 ceramics and copper. Journal of Welding, 27(2015).

[6] H J LIU, Z R LI, J C FENG et al. Vacuum brazing of SiC ceramics and TiAl alloys. Welding, 7(1999).

[7] Q WANG, G Q CHEN, K WANG et al. Microstructural evolution and growth kinetics of interfacial compounds in TiAl/Ti3SiC2 diffusion bonding joints. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 149(2019). https://linkinghub.elsevier.com/retrieve/pii/S0921509319304800

[8] C G ZHANG, G J QIAO, Z H JIN. Active brazing of pure alumina to Kovar alloy based on the partial transient liquid phase (PTLP) technique with Ni-Ti interlayer. Journal of the European Ceramic Society, 2181(2002). https://linkinghub.elsevier.com/retrieve/pii/S0955221902000110

[9] S J LI, Y ZHOU, H P DUAN et al. Joining of SiC ceramic to Ni-based superalloy with functionally gradient material fillers and a tungsten intermediate layer. Journal of Materials Science, 4065(2003). http://link.springer.com/10.1023/A:1026135220737

[10] A A ESSA, A S BAHRANI. The friction joining of ceramics to metals. Journal of Materials Processing Technology, 133(1991). https://linkinghub.elsevier.com/retrieve/pii/0924013691901282

[11] F DOEHLER, T ZSCHECKEL, S KASCH et al. A glass in the CaO/MgO/Al2O3/SiO2 system for the rapid laser sealing of alumina. Ceramics International, 4302(2017). https://linkinghub.elsevier.com/retrieve/pii/S0272884216323252

[12] B H RABIN. Joining of silicon carbide/silicon carbide composites and dense silicon carbide using combustion reactions in the titanium-carbon-nickel system. Journal of the American Ceramic Society, 131(1992). https://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1992.tb05454.x

[13] J A FERNIE, R A L DREW, K M KNOWLES. Joining of engineering ceramics. International Materials Reviews, 283(2009). http://www.tandfonline.com/doi/full/10.1179/174328009X461078

[14] W JING, H ZHANG. Influence of packaging technology on performance of power semiconductor modules. Power Electronics Technology, 1(2018).

[15] F J LIU, Z L DU, S P CHEN et al. Effect of electric field on the structure and mechanical properties of AZ31B/Al diffusion bonding interface. Weapon Materials Science and Engineering, 18(2009).

[16] G WALLIS, D I POMERANTZ. Field assisted glass-metal sealing. Journal of Applied Physics, 3946(1969). http://aip.scitation.org/doi/10.1063/1.1657121

[17] S C BYEON, K S HONG. Electric field assisted bonding of ceramics. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 159(2000). https://linkinghub.elsevier.com/retrieve/pii/S0921509300007693

[18] Z A MUNIR, U ANSELMI-TAMBURINI, M OHYANAGI. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, 763(2006). http://link.springer.com/10.1007/s10853-006-6555-2

[19] H DONG, S LI, Y TENG et al. Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2. Materials Science and Engineering: B, 60(2011). https://linkinghub.elsevier.com/retrieve/pii/S0921510710005787

[20] P FITRIANI, A SEPTIADI, J D HYUK et al. Joining of SiC monoliths using a thin MAX phase tape and the elimination of joining layer by solid-state diffusion. Journal of the European Ceramic Society, 3433(2018). https://linkinghub.elsevier.com/retrieve/pii/S095522191830205X

[21] P TATARKO, V CASALEGNO, C HU et al. Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering. Journal of the European Ceramic Society, 3957(2016). https://linkinghub.elsevier.com/retrieve/pii/S0955221916303260

[22] S GRASSO, P TATARKO, S RIZZO et al. Joining of β-SiC by spark plasma sintering. Journal of the European Ceramic Society, 1681(2014). https://linkinghub.elsevier.com/retrieve/pii/S0955221913005967

[23] X ZHOU, Y H HAN, X SHEN et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 466:, 322(2015). https://linkinghub.elsevier.com/retrieve/pii/S0022311515301446

[24] J XIA, K REN, Y WANG. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scripta Materialia, 165:, 34(2019). https://linkinghub.elsevier.com/retrieve/pii/S1359646219300764

[25] K M KNOWLES, A T J VAN HELVOORT. Anodic bonding. International Materials Reviews, 273(2006). http://www.tandfonline.com/doi/full/10.1179/174328006X102501

[26] R PAN. Study on technology and mechanism of electric-assisted diffusion bonding of alumina ceramic to Ti(2013).

[27] B DUNN. Field-assisted bonding of beta-alumina to metals. Journal of the American Ceramic Society, 545(1979). https://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1979.tb12726.x

[28] S C BYEON, T Y BYUN, K S HONG. Bonding between single- crystal manganese-zinc ferrites using electric field. Journal of Materials Research, 3191(1998). https://doi.org/10.1557/JMR.1998.0433

[29] S C BYEON, H J JE, K S HONG. Direct current-induced bonding between single- and polycrystalline manganese-zinc ferrites. IEEE Transactions on Magnetics, 371(2000). http://ieeexplore.ieee.org/document/822549/

[30] F H LU, R DIECKMANN. Point defects and cation tracer diffusion in (Co, Fe, Mn)3-δO4 spinels: I. Mixed spinels (CoxFe2yMny)3-δO4. Solid State Ionics, 53-56:, 290(1992). https://linkinghub.elsevier.com/retrieve/pii/0167273892903923

[31] F H LU, R DIECKMANN. Point defects and cation tracer diffusion in (Co, Fe, Mn)3-δO4 spinels: II. Mixed spinels (CoxFezMn2z)3-δO4. Solid State Ionics, 71(1993). https://linkinghub.elsevier.com/retrieve/pii/016727389390232R

[32] Y ARATA, A OHMORI, A SANO. Interfacial phenomena during field assisted bonding of zirconia to metals. Transactions of JWRI, 387(1986).

[33] B YANG, P SHEN, L T YU et al. Electrochemically-driven direct joining of Ni and ZrO2. Scripta Materialia, 141:, 41(2017). https://linkinghub.elsevier.com/retrieve/pii/S1359646217304268

[34] R PAN, Q WANG, D SUN et al. Effects of electric field on interfacial microstructure and shear strength of diffusion bonded α-Al2O3/Ti joints. Journal of the European Ceramic Society, 219(2015). https://linkinghub.elsevier.com/retrieve/pii/S0955221914003938

[35] P DONG, Z WANG, W WANG et al. Understanding the spark plasma sintering from the view of materials joining. Scripta Materialia, 123:, 118(2016). https://linkinghub.elsevier.com/retrieve/pii/S1359646216302573

[36] V MAMEDOV. Spark plasma sintering as advanced PM sintering method. Powder Metallurgy, 322(2002). http://www.tandfonline.com/doi/full/10.1179/003258902225007041

[37] Z SHEN, M JOHNSSON, Z ZHAO et al. Spark plasma sintering of alumina. Journal of the American Ceramic Society, 1921(2002). https://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.2002.tb00381.x

[38] O GUILLON, J GONZALEZ-JULIAN, B DARGATZ et al. Field-assisted sintering technology/Spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials, 830(2014). https://onlinelibrary.wiley.com/doi/10.1002/adem.201300409

[39] H LI, T KOYANAGI, C ANG et al. Electric current-assisted direct joining of silicon carbide. Journal of the European Ceramic Society, 3072(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221920304398

[40] S RIZZO, S GRASSO, M SALVO et al. Joining of C/SiC composites by spark plasma sintering technique. Journal of the European Ceramic Society, 903(2014). https://linkinghub.elsevier.com/retrieve/pii/S0955221913004883

[41] L SHEN, J M XUE, M W BARSOUM et al. Rapid bonding of Ti3SiC2 and Ti3AlC2 by pulsed electrical current heating. Journal of the American Ceramic Society, 3721(2014). https://onlinelibrary.wiley.com/doi/10.1111/jace.13323

[42] X ZHOU, L-K SHI, S ZOU et al. Fast seamless joining of SiCw/Ti3SiC2 composite using electric field-assisted sintering technique. International Journal of Applied Ceramic Technology, 1670(2021). https://onlinelibrary.wiley.com/doi/10.1111/ijac.13799

[43] L A HUGHES, K VAN BENTHEM. Spark plasma sintering apparatus used for the formation of strontium titanate bicrystals. Journal of Visualized Experiments, 120:, 1(2017).

[44] A NISAR, T DOLMETSCH, T PAUL et al. Electric field assisted solid-state interfacial joining of TaC-HfC ceramics without filler. Journal of the American Ceramic Society, 2483(2021). https://onlinelibrary.wiley.com/doi/10.1111/jace.17692

[45] L LIU, F YE, Y ZHOU et al. Fast bonding α-SiAlON ceramics by spark plasma sintering. Journal of the European Ceramic Society, 2683(2010). https://linkinghub.elsevier.com/retrieve/pii/S0955221910002396

[46] P TATARKO, Z CHLUP, A MAHAJAN et al. High temperature properties of the monolithic CVD beta-SiC materials joined with a pre-sintered MAX phase Ti3SiC2 interlayer via solid-state diffusion bonding. Journal of the European Ceramic Society, 1205(2017). https://linkinghub.elsevier.com/retrieve/pii/S0955221916305957

[47] Y YU, H DONG, B MA et al. Effect of different filler materials on the microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Journal of Alloys and Compounds, 373(2017). https://linkinghub.elsevier.com/retrieve/pii/S0925838817308083

[48] H DONG, Y YU, X JIN et al. Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Ceramics International, 14463(2016). https://linkinghub.elsevier.com/retrieve/pii/S027288421630880X

[49] X ZHAO, L DUAN, Y WANG. Fast interdiffusion and Kirkendall effects of SiC-coated C/SiC composites joined by a Ti-Nb-Ti interlayer via spark plasma sintering. Journal of the European Ceramic Society, 1757(2019). https://linkinghub.elsevier.com/retrieve/pii/S0955221919300329

[50] X ZHOU, J LIU, S ZOU et al. Almost seamless joining of SiC using an in-situ reaction transition phase of Y3Si2C2. Journal of the European Ceramic Society, 259(2020). https://linkinghub.elsevier.com/retrieve/pii/S0955221919306879

[51] H YANG, X ZHOU, W SHI et al. Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer. Journal of the European Ceramic Society, 1233(2017). https://linkinghub.elsevier.com/retrieve/pii/S0955221916306604

[52] E K AKDOGAN, I SAVKLIYILDIZ, H BICER et al. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: a time-resolved in situ energy dispersive X-ray diffractometry study with an ultrahigh energy synchrotron probe. Journal of Applied Physics, 3503(2013).

[53] C A GRIMLEY, A L G PRETTE, E C DICKEY. Effect of boundary conditions on reduction during early stage flash sintering of YSZ.. Acta Materialia, 271(2019). https://linkinghub.elsevier.com/retrieve/pii/S1359645419302708

[54] R I TODD, E ZAPATA-SOLVAS, R S BONILLA et al. Electrical characteristics of flash sintering: thermal runaway of Joule heating. Journal of the European Ceramic Society, 1865(2015). https://linkinghub.elsevier.com/retrieve/pii/S0955221914006797

[55] Y Y ZHANG, J Y NIE, J LUO. Flash sintering activated by bulk phase and grain boundary complexion transformations. Acta Materialia, 544(2019). https://linkinghub.elsevier.com/retrieve/pii/S135964541930669X

[56] K S NAIK, V M SGLAVO, R RAJ. Flash sintering as a nucleation phenomenon and a model thereof. Journal of the European Ceramic Society, 4063(2014). https://linkinghub.elsevier.com/retrieve/pii/S0955221914002465

[57] R RAJ, M COLOGNA, J S C FRANCIS. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. Journal of the American Ceramic Society, 1941(2011). https://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04652.x

[58] R CHAIM. Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials, 280(2016). http://www.mdpi.com/1996-1944/9/4/280

[59] R CHAIM, Y AMOUYAL. Liquid-film assisted mechanism of reactive flash sintering in oxide systems. Materials, 1494(2019). https://www.mdpi.com/1996-1944/12/9/1494

[60] Y H DONG, I W CHEN. Predicting the onset of flash sintering. Journal of the American Ceramic Society, 2333(2015). https://onlinelibrary.wiley.com/doi/10.1111/jace.13679

[61] M YU, S GRASSO, R MCKINNON et al. Review of flash sintering: materials, mechanisms and modelling. Advances in Applied Ceramics, 24(2017). https://www.tandfonline.com/doi/full/10.1080/17436753.2016.1251051

[62] W JI, B PARKER, S FALCO et al. Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. Journal of the European Ceramic Society, 2547(2017). https://linkinghub.elsevier.com/retrieve/pii/S0955221917300481

[63] Y Y ZHANG, J I JUNG, J LUO. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Materialia, 87(2015). https://linkinghub.elsevier.com/retrieve/pii/S1359645415002608

[64] T P MISHRA, V AVILA, R R I NETO et al. On the role of debye temperature in the onset of flash in three oxides. Scripta Materialia, 81(2019).

[65] P TATARKO, S GRASSO, T G SAUNDERS et al. Flash joining of CVD-SiC coated Cf/SiC composites with a Ti interlayer. Journal of the European Ceramic Society, 3841(2017). https://linkinghub.elsevier.com/retrieve/pii/S095522191730359X

[66] J B XIA, K REN, Y G WANG. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scripta Materialia, 34(2019). https://linkinghub.elsevier.com/retrieve/pii/S1359646219300764

[67] J S C FRANCIS, R RAJ. Flash-sinter-forging of nanograin zirconia: field assisted sintering and super-plasticity. Journal of the American Ceramic Society, 138(2012). https://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04855.x

[68] J S C FRANCIS, R RAJ. Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. Journal of the American Ceramic Society, 2754(2013). https://onlinelibrary.wiley.com/doi/10.1111/jace.12472

[69] Y CAO, G C XU, P SHEN. Flash joining of 3YSZ and 430 SS using Ag-CuO filler. Ceramics International, 4005(2022). https://linkinghub.elsevier.com/retrieve/pii/S0272884221033290

[70] J B XIA, K REN, W LIU et al. Ultrafast joining of zirconia ceramics using electric field at low temperatures. Journal of the European Ceramic Society, 3173(2019). https://linkinghub.elsevier.com/retrieve/pii/S095522191930247X

[71] J XIA, K REN, Y WANG. Flash joining of alumina ceramics under a small current density. Journal of the European Ceramic Society, 2782(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221920309249

[72] D SHI. Research on the process and mechanism of BSCF ceramics’ flash sintering and flash joining(2020).

[73] J XIA, K REN, Y WANG. Rapid joining of heterogeneous ceramics with a composite interlayer under the action of an electric field. Journal of the European Ceramic Society, 7164(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221921005070

[74] J B XIA, K REN, Y G WANG. Reversible joining of zirconia to titanium alloy. Ceramics International, 2509(2019).

[75] J B XIA, K REN, Y G WANG et al. Reversible flash-bonding of zirconia and nickel alloys. Scripta Materialia, 31(2018). https://linkinghub.elsevier.com/retrieve/pii/S1359646218302744

[76] Y CAO, G C XU, L LI et al. Flash sintering of 3YSZ and in-situ joining with 304 stainless steel using copper as an interlayer. Scripta Materialia, 5(2021).

[77] L LI, Y Z LIANG, S M CHEN et al. Ultrafast and robust joining of 3YSZ and GH3128 superalloy using Cu interlayer under an electric field. Journal of Alloys and Compounds, 161893(2022). https://linkinghub.elsevier.com/retrieve/pii/S0925838821033028

Yan LIU, Keying ZHANG, Tianyu LI, Bo ZHOU, Xuejian LIU, Zhengren HUANG. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend[J]. Journal of Inorganic Materials, 2023, 38(2): 113
Download Citation