• Photonics Research
  • Vol. 12, Issue 5, 995 (2024)
Yang Zhang1, Jiangming Xu1、4、*, Junrui Liang1, Sicheng Li1, Jun Ye1、2、3, Xiaoya Ma1, Tianfu Yao1、2、3, Zhiyong Pan1、2、3, Jinyong Leng1、2、3, and Pu Zhou1、5、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • 4e-mail: jmxu1988@163.com
  • 5e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.510057 Cite this Article Set citation alerts
    Yang Zhang, Jiangming Xu, Junrui Liang, Sicheng Li, Jun Ye, Xiaoya Ma, Tianfu Yao, Zhiyong Pan, Jinyong Leng, Pu Zhou. High power cladding-pumped low quantum defect Raman fiber amplifier[J]. Photonics Research, 2024, 12(5): 995 Copy Citation Text show less
    References

    [1] T. Nakayama. Boson peak and terahertz frequency dynamics of vitreous silica. Rep. Prog. Phys., 65, 1195-1242(2002).

    [2] J. Bünz, T. Brink, K. Tsuchiya. Low temperature heat capacity of a severely deformed metallic glass. Phys. Rev. Lett., 112, 135501(2014).

    [3] S. Ren, H. Zong, X. Tao. Boson-peak-like anomaly caused by transverse phonon softening in strain glass. Nat. Commun., 12, 5575(2021).

    [4] M. G. Jiménez, T. Barnard, B. A. Russell. Understanding the emergence of the boson peak in molecular glasses. Nat. Commun., 14, 215(2023).

    [5] T. S. Grigera, V. Martin-Mayor, G. Parisi. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature, 422, 289-292(2003).

    [6] H. Tanaka, H. Shintani. Universal link between the boson peak and transverse phonons in glass. Nat. Mater., 7, 870-877(2008).

    [7] A. I. Chumakov, G. Monaco, A. Monaco. Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett., 106, 225501(2011).

    [8] M. Baggioli, A. Zaccone. Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials. Phys. Rev. Lett., 122, 145501(2019).

    [9] Y. Hu, H. Tanaka. Origin of the boson peak in amorphous solids. Nat. Photonics, 18, 669-688(2022).

    [10] V. K. Malinovsky, A. P. Sokolov. The nature of boson peak in Raman scattering in glasses. Solid State Commun., 57, 757-761(1986).

    [11] J. Schroeder, W. Wu, J. L. Apkarian. Raman scattering and boson peaks in glasses: temperature and pressure effects. J. Non-Cryst. Solids, 349, 88-97(2004).

    [12] H. E. Hamzaoui, M. Bouazaoui, B. Capoen. Raman investigation of germanium-and phosphorus-doping effects on the structure of sol–gel silica-based optical fiber preforms. J. Mol. Struct., 1099, 77-82(2015).

    [13] C. Jauregui, C. Stihler, J. Limpert. Transverse mode instability. Adv. Opt. Photon., 12, 429-484(2020).

    [14] C. Jauregui, J. Limpert, A. Tünnermann. High-power fibre lasers. Nat. Photonics, 7, 861-867(2013).

    [15] M. N. Zervas. Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase. APL Photon., 4, 022802(2019).

    [16] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B, 27, B63-B92(2010).

    [17] J. Nilsson, D. N. Payne. High-power fiber lasers. Science, 332, 921-922(2011).

    [18] X. Chen, T. Yao, L. Huang. Functional fibers and functional fiber-based components for high-power lasers. Adv. Fiber. Mater., 5, 59-106(2023).

    [19] V. Dominic, S. MacCormack, R. Waarts. 110 W fibre laser. Electron. Lett., 35, 1158-1160(1999).

    [20] Y. Jeong, J. K. Sahu, D. N. Payne. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power. Electron. Lett., 40, 470-472(2004).

    [21] E. Stiles. New developments in IPG fiber laser technology. 5th International Workshop on Fiber Lasers(2009).

    [22] S. Matsubara, K. Uno, Y. Nakajima. Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature. Advanced Solid-State Photonics, TuB4(2007).

    [23] T. Yao, J. Ji, J. Nilsson. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers. J. Lightwave Technol., 32, 429-434(2014).

    [24] N. Yu, M. Cavillon, C. Kucera. Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber. Opt. Lett., 43, 3096-3099(2018).

    [25] Y. Chang, T. Yao, H. Jeong. 3% thermal load measured in tandem-pumped ytterbium-doped fiber amplifier. CLEO: 2014, STh4N.7(2014).

    [26] K. AlYahyaei, X. Zhu, L. Li. Ultralow-quantum-defect single-frequency fiber laser. Opt. Lett., 48, 3817-3820(2023).

    [27] N. Yu, K. V. Desai, A. E. Mironov. Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation. Appl. Phys. Lett., 119, 141105(2021).

    [28] J. M. Knall, M. Engholm, T. Boilard. Radiation-balanced silica fiber amplifier. Phys. Rev. Lett., 127, 013903(2021).

    [29] J. Knall, M. Engholm, T. Boilard. Radiation-balanced silica fiber laser. Optica, 8, 830-833(2021).

    [30] Y. Zhang, J. Xu, J. Ye. Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res., 8, 1155-1160(2020).

    [31] Y. Zhang, S. Li, J. Ye. Low quantum defect random Raman fiber laser. Opt. Lett., 47, 1109-1112(2022).

    [32] X. Ma, J. Ye, Y. Zhang. Hundred-watt-level phosphosilicate Raman fiber laser with less than 1% quantum defect. Opt. Lett., 46, 2662-2665(2021).

    [33] Y. Glick, Y. Shamir, M. Aviel. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett., 43, 4755-4758(2018).

    [34] X. Ma, J. Xu, J. Ye. Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng., 10, e8(2022).

    [35] V. R. Supradeepa, Y. Feng, J. W. Nicholson. Raman fiber lasers. J. Opt., 19, 023001(2017).

    [36] L. Zhang, J. Dong, Y. Feng. High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1400106(2018).

    [37] S. Li, J. Xu, J. Liang. Multi-wavelength random fiber laser with a spectral-flexible characteristic. Photon. Res., 11, 159-164(2023).

    [38] Y. Zhang, S. Wang, M. She. Spectrally programmable Raman fiber laser with adaptive wavefront shaping. Photon. Res., 11, 20-26(2023).

    [39] I. A. Lobach, S. I. Kablukov, S. A. Babin. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm. Opt. Lett., 42, 3526-3529(2017).

    [40] J. Dong, L. Zhang, J. Zhou. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett., 44, 1801-1804(2019).

    [41] J. Ye, C. Fan, J. Xu. 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng., 9, e55(2021).

    [42] M. M. Khudyakov, A. E. Levchenko, V. V. Velmiskin. Narrow-linewidth diffraction-limited tapered Er-doped fiber amplifier with 2 mJ pulse energy. Photonics, 9, 933(2022).

    [43] J. E. Heebner, A. K. Sridharan, J. W. Dawson. High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators. Opt. Express, 18, 14705-14716(2010).

    [44] H. Jiang, L. Zhang, Y. Feng. Cascaded-cladding-pumped cascaded Raman fiber amplifier. Opt. Express, 23, 13947-13952(2015).

    [45] T. Qi, D. Li, Z. Wang. 6.85 kW ytterbium-Raman fiber amplifier based on adjustable Raman threshold method. J. Lightwave Technol., 40, 3907-3915(2022).

    [46] Y. Chen, T. Yao, H. Xiao. Theoretical analysis of heat distribution in Raman fiber lasers and amplifiers employing pure passive fiber. IEEE Photon. J., 12, 1504713(2020).

    [47] H. Zhang, J. Wu, Y. Wan. Kilowatt random Raman fiber laser with full-open cavity. Opt. Lett., 47, 493-496(2022).

    Yang Zhang, Jiangming Xu, Junrui Liang, Sicheng Li, Jun Ye, Xiaoya Ma, Tianfu Yao, Zhiyong Pan, Jinyong Leng, Pu Zhou. High power cladding-pumped low quantum defect Raman fiber amplifier[J]. Photonics Research, 2024, 12(5): 995
    Download Citation