• Laser & Optoelectronics Progress
  • Vol. 60, Issue 24, 2400001 (2023)
Min Lin, Luping Du**, and Xiaocong Yuan*
Author Affiliations
  • Nanophotonics Research Centre, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    DOI: 10.3788/LOP231925 Cite this Article Set citation alerts
    Min Lin, Luping Du, Xiaocong Yuan. China's Top 10 Optical Breakthroughs: Research Progress of Photonic Skyrmion[J]. Laser & Optoelectronics Progress, 2023, 60(24): 2400001 Copy Citation Text show less
    References

    [1] Skyrme T H R. A unified field theory of mesons and baryons[J]. Nuclear Physics, 31, 556-569(1962).

    [2] al Khawaja U, Stoof H. Skyrmions in a ferromagnetic Bose-Einstein condensate[J]. Nature, 411, 918-920(2001).

    [3] Bogdanov A N, Rößler U K, Shestakov A A. Skyrmions in nematic liquid crystals[J]. Physical Review E, 67, 016602(2003).

    [4] Sondhi S L, Karlhede A, Kivelson S A et al. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies[J]. Physical Review B, 47, 16419-16426(1993).

    [5] Khalaf E, Chatterjee S, Bultinck N et al. Charged skyrmions and topological origin of superconductivity in magic-angle graphene[J]. Science Advances, 7, eabf5299(2021).

    [6] Mühlbauer S, Binz B, Jonietz F et al. Skyrmion lattice in a chiral magnet[J]. Science, 323, 915-919(2009).

    [7] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics[J]. Journal of Physics and Chemistry of Solids, 4, 241-255(1958).

    [8] Moriya T. Anisotropic superexchange interaction and weak ferromagnetism[J]. Physical Review, 120, 91-98(1960).

    [9] Yu X Z, Kanazawa N, Onose Y et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe[J]. Nature Materials, 10, 106-109(2011).

    [10] Yu X Z, Onose Y, Kanazawa N et al. Real-space observation of a two-dimensional skyrmion crystal[J]. Nature, 465, 901-904(2010).

    [11] Heinze S, von Bergmann K, Menzel M et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions[J]. Nature Physics, 7, 713-718(2011).

    [12] Romming N, Hanneken C, Menzel M et al. Writing and deleting single magnetic skyrmions[J]. Science, 341, 636-639(2013).

    [13] Iwasaki J, Mochizuki M, Nagaosa N. Universal current-velocity relation of skyrmion motion in chiral magnets[J]. Nature Communications, 4, 1463(2013).

    [14] Yu X Z, Kanazawa N, Zhang W Z et al. Skyrmion flow near room temperature in an ultralow current density[J]. Nature Communications, 3, 988(2012).

    [15] Fert A, Cros V, Sampaio J. Skyrmions on the track[J]. Nature Nanotechnology, 8, 152-156(2013).

    [16] Sampaio J, Cros V, Rohart S et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[J]. Nature Nanotechnology, 8, 839-844(2013).

    [17] Krause S, Wiesendanger R. Skyrmionics gets hot[J]. Nature Materials, 15, 493-494(2016).

    [18] Zhang X C, Zhao G P, Fangohr H et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory[J]. Scientific Reports, 5, 7643(2015).

    [19] Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 348, 1448-1451(2015).

    [20] Wang Z, Chong Y D, Joannopoulos J D et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [21] Khanikaev A B, Hossein Mousavi S, Tse W K et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).

    [22] Rechtsman M C, Zeuner J M, Plotnik Y et al. Photonic floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [23] Lu L, Wang Z Y, Ye D X et al. Experimental observation of Weyl points[J]. Science, 349, 622-624(2015).

    [24] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [25] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [26] Tsesses S, Ostrovsky E, Cohen K et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 361, 993-996(2018).

    [27] Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 9, 296-303(2022).

    [28] Göbel B, Mertig I, Tretiakov O A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles[J]. Physics Reports, 895, 1-28(2021).

    [29] Kézsmárki I, Bordács S, Milde P et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8[J]. Nature Materials, 14, 1116-1122(2015).

    [30] Milde P, Köhler D, Seidel J et al. Unwinding of a skyrmion lattice by magnetic monopoles[J]. Science, 340, 1076-1080(2013).

    [31] Nayak A K, Kumar V, Ma T P et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials[J]. Nature, 548, 561-566(2017).

    [32] Yu X Z, Koshibae W, Tokunaga Y et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet[J]. Nature, 564, 95-98(2018).

    [33] Shen Y J. Topological bimeronic beams[J]. Optics Letters, 46, 3737-3740(2021).

    [34] Jani H, Lin J C, Chen J H et al. Antiferromagnetic half-skyrmions and bimerons at room temperature[J]. Nature, 590, 74-79(2021).

    [35] Zhang X C, Xia J, Zhou Y et al. Control and manipulation of a magnetic skyrmionium in nanostructures[J]. Physical Review B, 94, 094420(2016).

    [36] Song C K, Ma Y X, Jin C D et al. Field-tuned spin excitation spectrum of kπ skyrmion[J]. New Journal of Physics, 21, 083006(2019).

    [37] Zheng F S, Li H, Wang S S et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk[J]. Physical Review Letters, 119, 197205(2017).

    [38] Zhang X C, Xia J, Ezawa M et al. A frustrated bimeronium: static structure and dynamics[J]. Applied Physics Letters, 118, 052411(2021).

    [39] Zhang S L, van der Laan G, Hesjedal T. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3[J]. Nature Communications, 8, 14619(2017).

    [40] Yu X Z, Tokunaga Y, Kaneko Y et al. Biskyrmion states and their current-driven motion in a layered manganite[J]. Nature Communications, 5, 3198(2014).

    [41] Foster D, Kind C, Ackerman P J et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets[J]. Nature Physics, 15, 655-659(2019).

    [42] Aiello A, Banzer P, Neugebauer M et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 9, 789-795(2015).

    [43] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [44] Neugebauer M, Bauer T, Aiello A et al. Measuring the transverse spin density of light[J]. Physical Review Letters, 114, 063901(2015).

    [45] Khosravi F, Cortes C L, Jacob Z. Spin photonics in 3D whispering gallery mode resonators[J]. Optics Express, 27, 15846-15855(2019).

    [46] Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 3300(2014).

    [47] Shi P, Du L P, Li C C et al. Transverse spin dynamics in structured electromagnetic guided waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018816118(2021).

    [48] Wolf E. A scalar representation of electromagnetic fields: II[J]. Proceedings of the Physical Society, 74, 269-280(1959).

    [49] Shi P, Du L P, Li M J et al. Symmetry-protected photonic chiral spin textures by spin-orbit coupling[J]. Laser & Photonics Reviews, 15, 2000554(2021).

    [50] Lei X R, Yang A P, Shi P et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Physical Review Letters, 127, 237403(2021).

    [51] Lei X R, Du L P, Yuan X C et al. Metastability of photonic spin meron lattices in the presence of perturbed spin-orbit coupling[J]. Optics Express, 31, 2225-2233(2023).

    [52] Li C C, Shi P, Du L P et al. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field[J]. Nanoscale, 12, 13674-13679(2020).

    [53] Meng F F, Yang A P, Du K et al. Measuring the magnetic topological spin structure of light using an anapole probe[J]. Light: Science & Applications, 11, 287(2022).

    [54] Dai Y N, Zhou Z K, Ghosh A et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 588, 616-619(2020).

    [55] Dai Y N, Zhou Z K, Ghosh A et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion[J]. Applied Physics Reviews, 9, 011420(2022).

    [56] Ghosh A, Yang S N, Dai Y N et al. A topological lattice of plasmonic merons[J]. Applied Physics Reviews, 8, 041413(2021).

    [57] Davis T J, Janoschka D, Dreher P et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 368, eaba6415(2020).

    [58] Gao S J, Speirits F C, Castellucci F et al. Paraxial skyrmionic beams[J]. Physical Review A, 102, 053513(2020).

    [59] Lin W B, Ota Y, Arakawa Y et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers[J]. Physical Review Research, 3, 023055(2021).

    [60] Sugic D, Droop R, Otte E et al. Particle-like topologies in light[J]. Nature Communications, 12, 6785(2021).

    [61] Wu H J, Yu B S, Zhu Z H et al. Conformal frequency conversion for arbitrary vectorial structured light[J]. Optica, 9, 187-196(2022).

    [62] Luo X X, Cai Y, Yue X et al. Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin-orbit coupling[J]. Photonics Research, 11, 610-621(2023).

    [63] Król M, Sigurdsson H, Rechcińska K et al. Observation of second-order meron polarization textures in optical microcavities[J]. Optica, 8, 255-261(2021).

    [64] Guo C, Xiao M, Guo Y et al. Meron spin textures in momentum space[J]. Physical Review Letters, 124, 106103(2020).

    [65] Lin M, Du L P, Yuan X C. Photonic pseudospin skyrmion in momentum space[J]. IEEE Photonics Journal, 15, 6500106(2023).

    [66] Karnieli A, Tsesses S, Bartal G et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect[J]. Nature Communications, 12, 1092(2021).

    [67] Shen Y J, Hou Y N, Papasimakis N et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space[J]. Nature Communications, 12, 5891(2021).

    [68] Deng Z L, Shi T, Krasnok A et al. Observation of localized magnetic plasmon skyrmions[J]. Nature Communications, 13, 8(2022).

    [69] Yang J, Zheng X Z, Wang J F et al. Symmetry-protected spoof localized surface plasmonic skyrmion[J]. Laser & Photonics Reviews, 16, 2200007(2022).

    [70] Xiong L, Li Y T, Halbertal D et al. Polaritonic vortices with a half-integer charge[J]. Nano Letters, 21, 9256-9261(2021).

    [71] Gutiérrez-Cuevas R, Pisanty E. Optical polarization skyrmionic fields in free space[J]. Journal of Optics, 23, 024004(2021).

    [72] Kong L Y, Zang J D. Dynamics of an insulating skyrmion under a temperature gradient[J]. Physical Review Letters, 111, 067203(2013).

    [73] Wang C J, Xiao D, Chen X et al. Manipulating and trapping skyrmions by magnetic field gradients[J]. New Journal of Physics, 19, 083008(2017).

    [74] Zang J D, Mostovoy M, Han J H et al. Dynamics of skyrmion crystals in metallic thin films[J]. Physical Review Letters, 107, 136804(2011).

    [75] Jiang W J, Zhang X C, Yu G Q et al. Direct observation of the skyrmion Hall effect[J]. Nature Physics, 13, 162-169(2017).

    [76] Bai C Y, Chen J, Zhang Y X et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons[J]. Optics Express, 28, 10320-10328(2020).

    [77] Lin M, Zhang W L, Liu C et al. Photonic spin skyrmion with dynamic position control[J]. ACS Photonics, 8, 2567-2572(2021).

    [78] Yang A P, Lei X R, Shi P et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing[J]. Advanced Science, 10, 2205249(2023).

    [79] Shi P, Du L P, Yuan X C. Strong spin-orbit interaction of photonic skyrmions at the general optical interface[J]. Nanophotonics, 9, 4619-4628(2020).

    [80] Lei X R, Du L P, Yuan X C et al. Optical spin-orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains[J]. Nanophotonics, 10, 3667-3675(2021).

    [81] Zhang Q, Xie Z W, Du L P et al. Bloch-type photonic skyrmions in optical chiral multilayers[J]. Physical Review Research, 3, 023109(2021).

    [82] Zhang Q, Xie Z W, Shi P et al. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 10, 947-957(2022).

    [83] Gan S W, Shi P, Yang A P et al. Deep-subwavelength optical spin textures in volume plasmon polaritons with hyperbolic metamaterials[J]. Advanced Optical Materials, 11, 2201986(2023).

    Min Lin, Luping Du, Xiaocong Yuan. China's Top 10 Optical Breakthroughs: Research Progress of Photonic Skyrmion[J]. Laser & Optoelectronics Progress, 2023, 60(24): 2400001
    Download Citation