• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907008 (2024)
Yue Yao1、2, Haojie Pei1、2, Hao Li3, Jiachen Wan1、2, Lili Tao3, and Hui Ma1、2、*
Author Affiliations
  • 1Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • 2Guangdong Engineering Center of Polarization Imaging and Sensing Technology, Shenzhen 518055, Guangdong, China
  • 3Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
  • show less
    DOI: 10.3788/CJL231462 Cite this Article Set citation alerts
    Yue Yao, Haojie Pei, Hao Li, Jiachen Wan, Lili Tao, Hui Ma. Digital Pathology Based on Fully Polarized Microscopic Imaging[J]. Chinese Journal of Lasers, 2024, 51(9): 0907008 Copy Citation Text show less
    References

    [1] Bera K, Schalper K A, Rimm D L et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology[J]. Nature Reviews: Clinical Oncology, 16, 703-715(2019).

    [2] Niazi M K K, Parwani A V, Gurcan M N. Digital pathology and artificial intelligence[J]. The Lancet: Oncology, 20, e253-e261(2019).

    [3] Marini N, Marchesin S, Otálora S et al. Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations[J]. NPJ Digital Medicine, 5, 102(2022).

    [4] Rashid R, Chen Y A, Hoffer J et al. Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data[J]. Nature Biomedical Engineering, 6, 515-526(2022).

    [5] van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic[J]. Nature Medicine, 27, 775-784(2021).

    [6] He C, He H H, Chang J T et al. Polarisation optics for biomedical and clinical applications: a review[J]. Light, Science & Applications, 10, 194(2021).

    [7] He H H, Liao R, Zeng N et al. Mueller matrix polarimetry: an emerging new tool for characterizing the microstructural feature of complex biological specimen[J]. Journal of Lightwave Technology, 37, 2534-2548(2019).

    [8] Shen Y X, Yao Y, He H H et al. Mueller matrix polarimetry: a label-free, quantitative optical method for clinical diagnosis[J]. Chinese Journal of Lasers, 47, 0207001(2020).

    [9] Zhang Y X, Fan Z P, Zhai H Y et al. Non-contact and in vivo polarization imaging method for measuring facial skin structures and characteristics[J]. Chinese Journal of Lasers, 50, 0307110(2023).

    [10] Zhang Y, Wu X J, He H H et al. Design and application of handheld polarized photoacoustic computational tomography probe[J]. Laser & Optoelectronics Progress, 59, 0817001(2022).

    [11] Ramella-Roman J C, Saytashev I, Piccini M. A review of polarization-based imaging technologies for clinical and preclinical applications[J]. Journal of Optics, 22, 123001(2020).

    [12] Huang T Y, Meng R Y, Qi J et al. Fast Mueller matrix microscope based on dual DoFP polarimeters[J]. Optics Letters, 46, 1676-1679(2021).

    [13] Alali S, Vitkin A. Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment[J]. Journal of Biomedical Optics, 20, 061104(2015).

    [14] Qi J, Elson D S. Mueller polarimetric imaging for surgical and diagnostic applications: a review[J]. Journal of Biophotonics, 10, 950-982(2017).

    [15] Wang Y, He H H, Chang J T et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope[J]. Micron, 79, 8-15(2015).

    [16] Arteaga O, Baldrís M, Antó J et al. Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation[J]. Applied Optics, 53, 2236-2245(2014).

    [17] Oldenbourg R. A new view on polarization microscopy[J]. Nature, 381, 811-812(1996).

    [18] Gribble A, Layden D, Vitkin I A. Experimental validation of optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter[J]. Optics Letters, 38, 5272-5275(2013).

    [19] Chang J T, He H H, Wang Y et al. Division of focal plane polarimeter-based 3×4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues[J]. Journal of Biomedical Optics, 21, 056002(2016).

    [20] Qi J, Ye M L, Singh M et al. Narrow band 3×3 Mueller polarimetric endoscopy[J]. Biomedical Optics Express, 4, 2433-2449(2013).

    [21] Meng R Y, Chen Z H, Wang X J et al. Comparison of different calibration methods for Mueller matrix microscopy of cells[J]. Applied Optics, 60, 1380-1386(2021).

    [22] Azzam R M. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 2, 148-150(1978).

    [23] Liu L, Oldenbourg R, Trimarchi J R et al. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes[J]. Nature Biotechnology, 18, 223-225(2000).

    [24] Wang W H, Meng L, Hackett R J et al. Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination[J]. Human Reproduction, 16, 1464-1468(2001).

    [25] Huang T Y, Meng R Y, Zhao Q H et al. Modular full-polarization microscope[J]. Chinese Journal of Lasers, 48, 1517002(2021).

    [26] Zhao Q H, Huang T Y, Hu Z et al. Geometric optimization method for a polarization state generator of a Mueller matrix microscope[J]. Optics Letters, 46, 5631-5634(2021).

    [27] Chen Z H, Meng R Y, Zhu Y H et al. A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging[J]. Optics and Lasers in Engineering, 129, 106055(2020).

    [28] Nordin G P, Meier J T, Deguzman P C et al. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America A, 16, 1168-1174(1999).

    [29] Li P C, Lü D H, He H H et al. Separating azimuthal orientation dependence in polarization measurements of anisotropic media[J]. Optics Express, 26, 3791-3800(2018).

    [30] Li P C, Dong Y, Wan J C et al. Polaromics: deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen[J]. Journal of Physics D: Applied Physics, 55, 034002(2022).

    [31] Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition[J]. Journal of the Optical Society of America A, 13, 1106-1113(1996).

    [32] Ghosh N, Wood M F G, Vitkin I A. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence[J]. Journal of Biomedical Optics, 13, 044036(2008).

    [33] Morio J, Goudail F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices[J]. Optics Letters, 29, 2234-2236(2004).

    [34] Ossikovski R, De Martino A, Guyot S. Forward and reverse product decompositions of depolarizing Mueller matrices[J]. Optics Letters, 32, 689-691(2007).

    [35] Anastasiadou M, Ben Hatit S, Ossikovski R et al. Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices[J]. Journal of the European Optical Society: Rapid Publications, 2, 07018(2007).

    [36] Ghosh N, Wood M F G, Vitkin I A. Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues[J]. Optics Communications, 283, 1200-1208(2010).

    [37] Sun M H, He H H, Zeng N et al. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters[J]. Applied Optics, 53, 2949-2955(2014).

    [38] Liu Y D, Dong Y, Si L et al. Comparison between image texture and polarization features in histopathology[J]. Biomedical Optics Express, 12, 1593-1608(2021).

    [39] Wang Y, He H H, Chang J T et al. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues[J]. Journal of Biomedical Optics, 21, 071112(2016).

    [40] Dong Y, Qi J, He H H et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope[J]. Biomedical Optics Express, 8, 3643-3655(2017).

    [41] Majumdar A, Lad J, Tumanova K et al. Machine learning based local recurrence prediction in colorectal cancer using polarized light imaging[J]. Journal of Biomedical Optics, 29, 052915(2024).

    [42] Yao Y, Zuo M, Dong Y et al. Polarization imaging feature characterization of different endometrium phases by machine learning[J]. OSA Continuum, 4, 1776-1791(2021).

    [43] Yao Y, Zhang F D, Wang B et al. Polarization imaging-based radiomics approach for the staging of liver fibrosis[J]. Biomedical Optics Express, 13, 1564-1580(2022).

    [44] Luu N T, Le T H, Phan Q H et al. Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm[J]. Journal of Biomedical Optics, 26, 075001(2021).

    [45] Ivanov D, Dremin V, Genova T et al. Polarization-based histopathology classification of ex vivo colon samples supported by machine learning[J]. Frontiers in Physics, 9, 814787(2022).

    [46] Dong Y, Wan J C, Si L et al. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues[J]. IEEE Transactions on Bio-Medical Engineering, 68, 881-892(2021).

    [47] Dong Y, Wan J C, Wang X J et al. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions[J]. IEEE Transactions on Medical Imaging, 40, 3728-3738(2021).

    [48] Roa C, Du Le V N, Mahendroo M et al. Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using K-NN and semantic segmentation classification[J]. Biomedical Optics Express, 12, 2236-2249(2021).

    [49] McKinley R I, Felger L A, Hewer E et al. Machine learning for white matter fibre tract visualization in the human brain via Mueller matrix polarimetric data[J]. Proceedings of SPIE, 12136, 121360G(2022).

    [50] Schucht P, Lee H R, Mezouar H M et al. Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging mueller polarimetry[J]. IEEE Transactions on Medical Imaging, 39, 4376-4382(2020).

    [51] Chen Y, Dong Y, Si L et al. Dual polarization modality fusion network for assisting pathological diagnosis[J]. IEEE Transactions on Medical Imaging, 42, 304-316(2023).

    [52] Wan J C, Dong Y, Yao Y et al. Unsupervised learning of pixel clustering in Mueller matrix images for mapping microstructural features in pathological tissues[J]. Communications Engineering, 2, 88(2023).

    [53] McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction[EB/OL]. http:∥arxiv.org/abs/1802.03426

    [54] Achanta R, Shaji A, Smith K et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2274-2282(2012).

    [55] Subudhi S, Patro R N, Biswal P K et al. A survey on superpixel segmentation as a preprocessing step in hyperspectral image analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5015-5035(2021).

    [56] Sinaga K P, Yang M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 8, 80716-80727(2020).

    [57] Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: machine learning in Python[J]. The Journal of Machine Learning Research, 12, 2825-2830(2011).

    Yue Yao, Haojie Pei, Hao Li, Jiachen Wan, Lili Tao, Hui Ma. Digital Pathology Based on Fully Polarized Microscopic Imaging[J]. Chinese Journal of Lasers, 2024, 51(9): 0907008
    Download Citation