• Nano-Micro Letters
  • Vol. 16, Issue 1, 154 (2024)
Yiding Li1, Li Wang1、*, Youzhi Song1, Wenwei Wang2、3, Cheng Lin2, and Xiangming He1、**
Author Affiliations
  • 1Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
  • 2National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology (BIT), Beijing 100081, People’s Republic of China
  • 3Shenzhen Automotive Research Institute of BIT (Shenzhen Research Institute of National Engineering Research Center of Electric Vehicles), Shenzhen, 518118, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01374-9 Cite this Article
    Yiding Li, Li Wang, Youzhi Song, Wenwei Wang, Cheng Lin, Xiangming He. Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries[J]. Nano-Micro Letters, 2024, 16(1): 154 Copy Citation Text show less
    References

    [1] C. Semeraro, M. Caggiano, A.-G. Olabi, M. Dassisti, Battery monitoring and prognostics optimization techniques: challenges and opportunities. Energy 255, 124538 (2022).

    [2] K. Liu, Y.Y. Liu, D.C. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    [3] K. Edstrom, R. Dominko, M. Fichtner, S. Perraud, J.M. Tarascon et al., Battery 2030+ Roadmap—Second Draft, (2020).

    [4] S. Dol, R. Bhinge, SMART motor for industry 4.0. IEEMA IEEE Engineer Infinite Conference. 1–6 (2018). https://ieeexplore.ieee.org/document/8385291

    [5] J. Jayakumar, B. Nagaraj, S. Chacko, P. Ajay, Conceptual implementation of artificial intelligent based E-mobility controller in smart city environment. Wirel. Commun. Mob. Comput. 2021, 5325116 (2021).

    [6] S. Ci, N. Lin, D. Wu, Reconfigurable battery techniques and systems: a survey. IEEE Access 4, 1175–1189 (2016).

    [7] L. Komsiyska, T. Buchberger, S. Diehl, M. Ehrensberger, C. Hanzl et al., Critical review of intelligent battery systems: challenges, implementation, and potential for electric vehicles. Energies 14, 5989 (2021).

    [8] N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022).

    [9] A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017).

    [10] D. Hu, G. Chen, J. Tian, N. Li, L. Chen et al., Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. J. Energy Chem. 60, 104–110 (2021).

    [11] X. Zhang, J. Zhu, E. Sahraei, Degradation of battery separators under charge–discharge cycles. RSC Adv. 7, 56099–56107 (2017).

    [12] C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power. Sources 341, 373–386 (2017).

    [13] X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng et al., A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power. Sources 251, 38–54 (2014).

    [14] Z.G. Wu, J.B. Zhang, Z. Li, B.Y. Liaw, Aging abuse boundary of lithium-ion cell above room temperature. J. Autom. Saf. Energy 9(1), 99–109 (2018).

    [15] J. Liu, Z. Huang, J. Sun, Q. Wang, Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. J. Power. Sources 526, 231136 (2022).

    [16] L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023).

    [17] H. Zhao, W.-Y.A. Lam, L. Wang, H. Xu, W.A. Daoud et al., The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective. Energy Environ. Sci. 15, 2329–2355 (2022).

    [18] Y. Plotnikov, J. Karp, A. Knobloch, C. Kapusta, D. Lin-Eddy, Current sensor for in-situ monitoring of swelling of Li-ion prismatic cells. AIP Conference Proceedings. Boise, Idaho. AIP Publishing LLC 1650, 434–442 (2015)

    [19] W. Choi, Y. Seo, K. Yoo, T.J. Ko, J. Choi, Carbon nanotube-based strain sensor for excessive swelling detection of lithium-ion battery. in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2356–2359 (2019).

    [20] A. Knobloch, C. Kapusta, J. Karp, Y. Plotnikov, J.B. Siegel et al., Fabrication of multimeasurand sensor for monitoring of a Li-ion battery. J. Electron. Packag. 140, 031002 (2018).

    [21] D. Anthony, D. Wong, D. Wetz, A. Jain, Non-invasive measurement of internal temperature of a cylindrical Li-ion cell during high-rate discharge. Int. J. Heat Mass Transf. 111, 223–231 (2017).

    [22] S. Dey, Z.A. Biron, S. Tatipamula, N. Das, S. Mohon et al., Model-based real-time thermal fault diagnosis of Lithium-ion batteries. Contr. Eng. Pract. 56, 37–48 (2016).

    [23] J.P. Zheng, P. Andrei, L. Jin, J. Zheng, C. Zhang, Pre-lithiation strategies and energy density theory of lithium-ion and beyond lithium-ion batteries. J. Electrochem. Soc. 169, 040532 (2022).

    [24] P.U. Nzereogu, A.D. Omah, F.I. Ezema, E.I. Iwuoha, A.C. Nwanya, Anode materials for lithium-ion batteries: a review. Appl. Surf. Sci. Adv. 9, 100233 (2022).

    [25] W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon et al., Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 59, 2578–2605 (2020).

    [26] Z. Deng, Z. Huang, Y. Shen, Y. Huang, H. Ding et al., Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule 4, 2017–2029 (2020).

    [27] H. Cui, D. Ren, M. Yi, S. Hou, K. Yang et al., Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy 104, 107874 (2022).

    [28] L. Yang, H.-S. Chen, W.-L. Song, D. Fang, Effect of defects on diffusion behaviors of lithium-ion battery electrodes: in situ optical observation and simulation. ACS Appl. Mater. Interfaces 10, 43623–43630 (2018).

    [29] C. Modrzynski, V. Roscher, F. Rittweger, A. Ghannoum, P. Nieva, K.R. Riemschneider, Integrated optical fibers for simultaneous monitoring of the anode and the cathode in lithium ion batteries. 18th IEEE Sensors Conference. 19261568 (2019).

    [30] V. Roscher, K.-R. Riemschneider, Method and measurement setup for battery state determination using optical effects in the electrode material. IEEE Trans. Instrum. Meas. 67, 735–744 (2018).

    [31] E. Villemin, O. Raccurt, Optical lithium sensors. Coord. Chem. Rev. 435, 213801 (2021).

    [32] S. Zhu, J. Han, T.-S. Pan, Y.-M. Wei, W.-L. Song et al., A novel designed visualized Li-ion battery for in situ measuring the variation of internal temperature. Extreme Mech. Lett. 37, 100707 (2020).

    [33] S. Rudolph, U. Schröder, I.M. Bayanov, K. Blenke, D. Hage, High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor. J. Electroanal. Chem. 694, 17–22 (2013).

    [34] C. Zhu, R.E. Gerald, J. Huang, Progress toward sapphire optical fiber sensors for high-temperature applications. IEEE Trans. Instrum. Meas. 69, 8639–8655 (2020).

    [35] A. Raghavan, P. Kiesel, L.W. Sommer, J. Schwartz, A. Lochbaum et al., Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance. J. Power. Sources 341, 466–473 (2017).

    [36] J. Huang, L. Albero Blanquer, J. Bonefacino, E.R. Logan, D. Alves Dalla Corte et al., Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020).

    [37] Y.D. Su, Y. Preger, H. Burroughs, C. Sun, P.R. Ohodnicki, Fiber optic sensing technologies for battery management systems and energy storage applications. Sensors (Basel) 21, 1397 (2021).

    [38] Z. Miao, Y. Li, X. Xiao, Q. Sun, B. He et al., Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries. Energy Environ. Sci. 15, 2029–2038 (2022).

    [39] J. Huang, L.A. Blanquer, C. Gervillié, J.-M. Tarascon, Distributed fiber optic sensing to assess In-live temperature imaging inside batteries: Rayleigh and FBGs. J. Electrochem. Soc. 168, 060520 (2021).

    [40] J. Albert, L.-Y. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7, 83–108 (2013).

    [41] J. Hedman, F. Björefors, Fiber optic monitoring of composite lithium iron phosphate cathodes in pouch cell batteries. ACS Appl. Energy Mater. 5, 870–881 (2022).

    [42] A. Ghannoum, P. Nieva, Graphite lithiation and capacity fade monitoring of lithium ion batteries using optical fibers. J. Energy Storage 28, 101233 (2020).

    [43] J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Björefors, Fibre optic sensor for characterisation of lithium-ion batteries. ChemSusChem 13, 5731–5739 (2020).

    [44] C. Gardner, E. Langhammer, W. Du, D.J.L. Brett, P.R. Shearing et al., In-situ Li-ion pouch cell diagnostics utilising plasmonic based optical fibre sensors. Sensors 22, 738 (2022).

    [45] J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao et al., In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light. Sci. Appl. 7, 34 (2018).

    [46] Y. Yu, E. Vergori, D. Worwood, Y. Tripathy, Y. Guo et al., Distributed thermal monitoring of lithium ion batteries with optical fibre sensors. J. Energy Storage 39, 102560 (2021).

    [47] M. Nascimento, S. Novais, M.S. Ding, M.S. Ferreira, S. Koch et al., Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power. Sources 410–411, 1–9 (2019).

    [48] M.S. Wahl, L. Spitthoff, H.I. Muri, A. Jinasena, O.S. Burheim et al., The importance of optical fibres for internal temperature sensing in lithium-ion batteries during operation. Energies 14, 3617 (2021).

    [49] J. Huang, X. Han, F. Liu, C. Gervillié, L.A. Blanquer et al., Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors. Energy Environ. Sci. 14, 6464–6475 (2021).

    [50] G. Han, J. Yan, Z. Guo, D. Greenwood, J. Marco et al., A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 150, 111514 (2021).

    [51] P. Lu, N. Lalam, M. Badar, B. Liu, B.T. Chorpening et al., Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev. 6, 041302 (2019).

    [52] J. Huang, S.T. Boles, J.-M. Tarascon, Sensing as the key to battery lifetime and sustainability. Nat. Sustain. 5, 194–204 (2022).

    [53] A. Nedjalkov, J. Meyer, A. Gräfenstein, B. Schramm, M. Angelmahr et al., Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors. Batteries 5, 30 (2019).

    [54] P. Desai, J. Huang, H. Hijazi, L. Zhang, S. Mariyappan et al., Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation. Adv. Energy Mater. 11, 2101490 (2021).

    [55] J. Fleming, T. Amietszajew, E. McTurk, D.P. Towers, D. Greenwood et al., Development and evaluation of in situ instrumentation for cylindrical Li-ion cells using fibre optic sensors. HardwareX 3, 100–109 (2018).

    [56] M. Nascimento, M. Ferreira, J. Pinto, Simultaneous sensing of temperature and Bi-directional strain in a prismatic Li-ion battery. Batteries 4, 23 (2018).

    [57] A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki et al., Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation. J. Power. Sources 341, 474–482 (2017).

    [58] A.M. Cao Paz, J.M. Acevedo, C. Quintans-Grana, S. Fernandez-Gomez, Lifetime estimation for plastic optical fibers in harsh acid environments. IEEE Trans. Device Mater. Reliab. 12, 4–9 (2012).

    [59] J. Peng, S. Jia, S. Yang, X. Kang, H. Yu et al., State estimation of lithium-ion batteries based on strain parameter monitored by fiber Bragg grating sensors. J. Energy Storage 52, 104950 (2022).

    [60] J. Peng, S. Jia, H. Yu, X. Kang, S. Yang et al., Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries. IEEE Sens. J. 21, 4628–4634 (2021).

    [61] M. Maheshwari, Y. Yang, T. Chaturvedi, S.C. Tjin, Chirped fiber Bragg grating coupled with a light emitting diode as FBG interrogator. Opt. Lasers Eng. 122, 59–64 (2019).

    [62] W. Mei, Z. Liu, C. Wang, C. Wu, Y. Liu et al., Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023).

    [63] C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).

    [64] Q. Jiang, D. Hu, M. Yang, Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating. Sens. Actuat. A Phys. 170, 62–65 (2011).

    [65] T. Osuch, T. Jurek, K. Markowski, K. Jedrzejewski, Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating. IEEE Sens. J. 16, 1205–1209 (2016).

    [66] F. Liu, W. Lu, J. Huang, V. Pimenta, S. Boles et al., Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs. Nat. Commun. 14, 7350 (2023).

    [67] C.R. Taitt, G.P. Anderson, F.S. Ligler, Evanescent wave fluorescence biosensors: advances of the last decade. Biosens. Bioelectron. 76, 103–112 (2016).

    [68] A. Ghannoum, R.C. Norris, K. Iyer, L. Zdravkova, A. Yu et al., Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy. ACS Appl. Mater. Interfaces 8, 18763–18769 (2016).

    [69] A. Ghannoum, K. Iyer, P. Nieva, A. Khajepour, Fiber optic monitoring of lithium-ion batteries a novel tool to understand the lithiation of batteries. 15th IEEE Sensors Conference. 16597286 (2016). https://ieeexplore.ieee.org/document/7808695

    [70] A. Ghannoum, P. Nieva, A. Yu, A. Khajepour, Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 41284–41290 (2017).

    [71] J. Hedman, R. Mogensen, R. Younesi, F. Björefors, Fiber optic sensors for detection of sodium plating in sodium-ion batteries. ACS Appl. Energy Mater. 5, 6219–6227 (2022).

    [72] V. Kapoor, N.K. Sharma, Effect of oxide layer on the performance of silver based fiber optic surface plasmon resonance sensor. Opt. Quantum Electron. 54, 475 (2022).

    [73] R. Wang, H. Zhang, Q. Liu, F. Liu, X. Han et al., Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat. Commun. 13, 547 (2022).

    [74] X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren et al., In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021).

    [75] X. Wang, D. Ren, H. Liang, Y. Song, H. Huo et al., Ni crossover catalysis: truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries. Energy Environ. Sci. 16, 1200–1209 (2023).

    [76] A.M. Cao-Paz, J. Marcos-Acevedo, A. del Río-Vázquez, C. Martínez-Peñalver, A. Lago-Ferreiro et al., A multi-point sensor based on optical fiber for the measurement of electrolyte density in lead-acid batteries. Sensors 10, 2587–2608 (2010).

    [77] B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill et al., Temperature dependence of sapphire fiber Raman scattering. Opt. Lett. 40, 2041–2044 (2015).

    [78] J. Thapa, B. Liu, S.D. Woodruff, B.T. Chorpening, M.P. Buric, Raman scattering in single-crystal sapphire at elevated temperatures. Appl. Opt. 56, 8598–8606 (2017).

    [79] G.H. Watson Jr., W.B. Daniels, C.S. Wang, Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire. J. Appl. Phys. 52, 956–958 (1981).

    [80] H.H. Kee, G.P. Lees, T.P. Newson, All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous brillouin scattering. Optics Lett. 25(10), 695–697 (2000).

    [81] S.-O. Yang, S. Lee, S.H. Song, J. Yoo, Development of a distributed optical thermometry technique for battery cells. Int. J. Heat Mass Transf. 194, 123020 (2022).

    [82] H.L. Atchison, Z.R. Bailey, D.A. Wetz, M. Davis, J.M. Heinzel, Fiber optic based thermal and strain sensing of lithium-ion batteries at the individual cell level. J. Electrochem. Soc. 168, 040535 (2021).

    [83] Z. Wei, J. Hu, H. He, Y. Yu, J. Marco, Embedded distributed temperature sensing enabled multistate joint observation of smart lithium-ion battery. IEEE Trans. Ind. Electron. 70, 555–565 (2023).

    [84] Z. Wei, P. Li, W. Cao, H. Chen, W. Wang et al., Machine learning-based hybrid thermal modeling and diagnostic for lithium-ion battery enabled by embedded sensing. Appl. Therm. Eng. 216, 119059 (2022).

    [85] Y. Yu, E. Vergori, F. Maddar, Y. Guo, D. Greenwood et al., Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre. J. Power. Sources 521, 230957 (2022).

    [86] C.-J. Bae, A. Manandhar, P. Kiesel, A. Raghavan, Monitoring the strain evolution of Lithium-Ion battery electrodes using an optical fiber Bragg grating sensor. Energy Technol. 4, 851–855 (2016).

    [87] X. Wang, Y. Sone, G. Segami, H. Naito, C. Yamada et al., Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements. J. Electrochem. Soc. 154, A14 (2007).

    [88] D. Clerici, F. Mocera, A. Somà, Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries. J. Power. Sources 542, 231735 (2022).

    [89] M. Nascimento, C. Marques, J. Pinto, Tracking Li-ion batteries using fiber optic sensors. Smart Mobility-Recent Advances, New Perspectives and Applications, 1–28 (2022).

    [90] J. Meyer, A. Nedjalkov, A. Doering, M. Angelmahr, W. Schade, Fiber optical sensors for enhanced battery safety. SPIE Sensing Technology + Applications. in Proceedings of SPIE 9480, Fiber Optic Sensors and Applications XII Baltimore, MD, USA9480, 190–201 (2015).

    [91] M. Nascimento, M.S. Ferreira, J.L. Pinto, Impact of different environmental conditions on lithium-ion batteries performance through the thermal monitoring with fiber sensors. in Proc SPIE 10453, Third International Conference on Applications of Optics and Photonics10453, 673–677 (2017).

    [92] K.M. Alcock, M. Grammel, Á. González-Vila, L. Binetti, K. Goh et al., An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring. Sens. Actuat. A Phys. 332, 113061 (2021).

    [93] L.W. Sommer, P. Kiesel, A. Ganguli, A. Lochbaum, B. Saha et al., Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. J. Power. Sources 296, 46–52 (2015).

    [94] L.W. Sommer, A. Raghavan, P. Kiesel, B. Saha, J. Schwartz et al., Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors. J. Electrochem. Soc. 162, A2664–A2669 (2015).

    [95] S. Kim, J. Wee, K. Peters, H.-Y.S. Huang, Multiphysics coupling in lithium-ion batteries with reconstructed porous microstructures. J. Phys. Chem. C 122(10), 5280–5290 (2018).

    [96] B. Rente, M. Fabian, M. Vidakovic, X. Liu, X. Li et al., Lithium-ion battery state-of-charge estimator based on FBG-based strain sensor and employing machine learning. IEEE Sens. J. 21, 1453–1460 (2021).

    [97] C. Veth, D. Dragicevic, C. Merten, Thermal characterizations of a large-format lithium ion cell focused on high current discharges. J. Power. Sources 267, 760–769 (2014).

    [98] T. Amietszajew, E. McTurk, J. Fleming, R. Bhagat, Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells. Electrochim. Acta 263, 346–352 (2018).

    [99] L. Albero Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier et al., Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 (2022).

    [100] C.E. Hendricks, A.N. Mansour, D.A. Fuentevilla, G.H. Waller, J.K. Ko et al., Copper dissolution in overdischarged lithium-ion cells: X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis. J. Electrochem. Soc. 167, 090501 (2020).

    [101] Z. Wei, J. Zhao, H. He, G. Ding, H. Cui et al., Future smart battery and management: advanced sensing from external to embedded multi-dimensional measurement. J. Power. Sources 489, 229462 (2021).

    [102] R. Srinivasan, P.A. Demirev, B.G. Carkhuff, Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention. J. Power. Sources 405, 30–36 (2018).

    [103] W. Wang, Y. Li, L. Cheng, F. Zuo, S. Yang, Safety performance and failure prediction model of cylindrical lithium-ion battery. J. Power. Sources 451, 227755 (2020).

    [104] J. Sun, B. Mao, Q. Wang, Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf. J. 120, 103119 (2021).

    [105] Y. Li, W. Wang, C. Lin, F. Zuo, High-efficiency multiphysics coupling framework for cylindrical lithium-ion battery under mechanical abuse. J. Clean. Prod. 286, 125451 (2021).

    [106] Y. Li, W. Wang, C. Lin, X. Yang, F. Zuo, Multi-physics safety model based on structure damage for lithium-ion battery under mechanical abuse. J. Clean. Prod. 277, 124094 (2020).

    [107] M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng et al., Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni1/3Co1/3Mn1/3O2+ Li Mn2O4 composite cathode. J. Power. Sources 279, 626–635 (2015).

    [108] G. Antonio, J. Monsalve-Serrano, R. Sari, S.D. Boggio, An optical investigation of thermal runway phenomenon under thermal abuse conditions. Energy Convers. Manag. 246, 114663 (2021).

    [109] Z. Liao, S. Zhang, K. Li, G. Zhang, T.G. Habetler, A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power. Sources 436, 226879 (2019).

    [110] M. Dotoli, R. Rocca, M. Giuliano, G. Nicol, F. Parussa et al., A review of mechanical and chemical sensors for automotive Li-ion battery systems. Sensors 22, 1763 (2022).

    [111] X. Feng, M. Fang, X. He, M. Ouyang, L. Lu et al., Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power. Sources 255, 294–301 (2014).

    [112] S. Chen, Z. Gao, T. Sun, Safety challenges and safety measures of Li-ion batteries. Energy Sci. Eng. 9, 1647–1672 (2021).

    [113] P.A. Christensen, Z. Milojevic, M.S. Wise, M. Ahmeid, P.S. Attidekou et al., Thermal and mechanical abuse of electric vehicle pouch cell modules. Appl. Therm. Eng. 189, 116623 (2021).

    [114] Y. Li, W. Wang, X.-G. Yang, F. Zuo, S. Liu et al., A smart Li-ion battery with self-sensing capabilities for enhanced life and safety. J. Power. Sources 546, 231705 (2022).

    [115] A. Raghavan, P. Kiesel, A. Lochbaum, B. Saha, L.W. Sommer, T. Staudt, Battery management based on internal optical sensing. US Patent, 9553465 B2 (2014). https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9553465

    [116] H. Atchison, Z. Bailey, D. Wetz, M. Davis, J. Heinzel, Thermal monitoring of series and parallel connected lithium-ion battery modules using fiber optic sensors. ECS Sens. Plus 1, 025401 (2022).

    [117] A. Wang, L. Wang, Y. Wu, Y. He, D. Ren et al., Uncovering the effect of solid electrolyte interphase on ion desolvation for rational interface design in Li-ion batteries. Adv. Energy Mater. 13, 2300626 (2023).

    [118] A. Wang, L. Wang, H. Liang, Y. Song, Y. He et al., Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: a perspective. Adv. Funct. Mater. 33, 2370044 (2023).

    [119] Y. Song, L. Wang, H. Cui, H. Liang, Q. Hu et al., Boosting battery safety by mitigating thermal-induced crosstalk with a Bi-continuous separator. Adv. Energy Mater. 12, 2201964 (2022).

    [120] Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34, e2106335 (2022).

    [121] Z. Zhang, Y. Song, B. Zhang, L. Wang, X. He, Metallized plastic foils: a promising solution for high-energy lithium-ion battery current collectors. Adv. Energy Mater. 13, 2302134 (2023).

    [122] Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 (2023).

    [123] X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

    [124] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018).

    [125] J. Glenneberg, G. Kasiri, I. Bardenhagen, F. La Mantia, M. Busse et al., Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy 57, 549–557 (2019).

    [126] L. Xue, Y. Li, A. Hu, M. Zhou, W. Chen et al., In Situ/operando Raman techniques in lithium–sulfur batteries. Small Struct. 3, 2100170 (2022).

    [127] D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett. 6, 347–358 (2014).

    [128] H. Deng, F. Qiu, X. Li, H. Qin, S. Zhao et al., A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method. Electrochem. Commun. 78, 11–15 (2017).

    [129] J. Zhu, U. Schwingenschlögl, Silicene for Na-ion battery applications. Mater. 3, 035012 (2016).

    [130] Z. Ju, Q. Zhao, D. Chao, Y. Hou, H. Pan et al., Energetic aqueous batteries. Adv. Energy Mater. 12, 2201074 (2022).

    [131] S. Wei, H. Liu, R. Wei, L. Chen, Cathodes with MnO2 catalysts for metal fuel battery. Front. Energy 13, 9–15 (2019).

    [132] S. Qian, X. Chen, S. Jiang, Q. Sun, X. Chen et al., Plasmonic fiber-optic sensing system for in situ monitoring the capacitance and temperature of supercapacitors. Opt. Express 30, 27322–27332 (2022).

    [133] P. Listewnik, M. Bechelany, M. Szczerska, Microsphere structure application for supercapacitor in situ temperature monitoring. Smart Mater. Struct. 30, 10LT01 (2021).

    [134] X. Cheng, M. Pecht, In situ stress measurement techniques on Li-ion battery electrodes: a review. Energies 10, 591 (2017).

    [135] V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power. Sources 195, 5062–5066 (2010).

    [136] A.F. Bower, P.R. Guduru, V.A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804–828 (2011).

    [137] V.A. Sethuraman, V. Srinivasan, A.F. Bower, P.R. Guduru, In situ measurements of stress-potential coupling in lithiated silicon. J. Electrochem. Soc. 157, A1253 (2010).

    [138] S. Fujimoto, S. Uemura, N. Imanishi, S. Hirai, Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor. Mech. Eng. Lett. 5, 19–00095 (2019).

    [139] A. Fortier, M. Tsao, N. Williard, Y. Xing, M. Pecht, Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells. Energies 10, 838 (2017).

    [140] Y. Wu, X. Long, J. Lu, R. Zhou, L. Liu et al., Long-life in situ temperature field monitoring using Fiber Bragg grating sensors in electromagnetic launch high-rate hardcase lithium-ion battery. J. Energy Storage 57, 106207 (2023).

    [141] B. Witzigmann, Y. Arakawa, M. Osiński, K. Markiewicz, P. Mergo et al., A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for high temperature environment. Physics and Simulation of Optoelectronic Devices XXVI. 105260X (2018).

    [142] B. Witzigmann, M. Osiński, Y. Arakawa, A. Ziolowicz, A. Kołakowska et al., Strain sensor based on sectional crosstalk change in dual-core fibers. Physics and Simulation of Optoelectronic Devices XXV. 100981N (2017).

    [143] J. Mathew, Y. Semenova, G. Rajan, G. Farrell, Humidity sensor based on photonic crystal fibre interferometer. Electron. Lett. 46, 1341 (2010).

    [144] K. Naeem, B.H. Kim, B. Kim, Y. Chung, High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer. IEEE Sens. J. 15, 3998–4003 (2015).

    [145] O. Frazao, C. Jesus, J.M. Baptista, J.L. Santos, P. Roy, Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber. IEEE Photonics Technol. Lett. 21, 1277–1279 (2009).

    [146] H.P. Gong, C.C. Chan, P. Zu, L.H. Chen, X.Y. Dong, Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop. Opt. Commun. 283, 3142–3144 (2010).

    [147] H.V. Thakur, S.M. Nalawade, S. Gupta, R. Kitture, S.N. Kale, Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl. Phys. Lett. 99, 161101 (2011).

    [148] K. Mileńko, D.J. Hu, P.P. Shum, T. Zhang, J.L. Lim et al., Photonic crystal fiber tip interferometer for refractive index sensing. Opt. Lett. 37, 1373–1375 (2012).

    [149] J.N. Dash, R. Jha, Inline microcavity-based PCF interferometer for refractive index and temperature sensing. IEEE Photonics Technol. Lett. 27, 1325–1328 (2015).

    [150] M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59–62 (2016).

    [151] C. Du, Q. Wang, Y. Zhao, J. Li, Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. Opt. Fiber Technol. 34, 12–15 (2017).

    [152] W.J. Bock, J. Chen, P. Mikulic, T. Eftimov, M. Korwin-Pawlowski, Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Meas. Sci. Technol. 18, 3098–3102 (2007).

    [153] Y.-P. Wang, Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Optics Lett. 31(23), 3414–3416 (2006).

    [154] S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara et al., Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers. IEEE Photonics Technol. Lett. 24, 527–529 (2012).

    [155] Y. Zhao, R.-Q. Lv, Y. Ying, Q. Wang, Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid. Opt. Laser Technol. 44, 899–902 (2012).

    [156] W. Lin, H. Zhang, B. Song, B. Liu, Y. Lin et al., Magnetic field sensor based on fiber taper coupler coated with magnetic fluid. Proc. SPIE 9634, 1056–1059 (2015).

    [157] H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao et al., Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance. Optik 134, 257–263 (2017).

    [158] A.A. Rifat, G.A. Mahdiraji, Y.M. Sua, R. Ahmed, Y.G. Shee et al., Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24, 2485–2495 (2016).

    [159] H.-J. Kim, O.-J. Kown, S.B. Lee, Y.-G. Han, Measurement of temperature and refractive index based onsurface long-period gratings deposited onto a D-shaped photonic crystal fiber. Appl. Phys. B 102, 81–85 (2011).

    [160] J. Sun, C.C. Chan, Photonic bandgap fiber for refractive index measurement. Sens. Actuat. B Chem. 128, 46–50 (2007).

    [161] M. Nascimento, M.S. Ferreira, J.L. Pinto, Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions. Appl. Therm. Eng. 149, 1236–1243 (2019).

    [162] S.S. Patil, V.P. Labade, N.M. Kulkarni, A.D. Shaligram, Refractometric fiber optic sensor for in situ monitoring the state-of-charge of a lead acid battery. J. Opt. Technol. 81, 159–163 (2014).

    [163] N.A. David, P.M. Wild, J. Jensen, T. Navessin, N. Djilali, Simultaneous in situ measurement of temperature and relative humidity in a PEMFC using optical fiber sensors. J. Electrochem. Soc. 157, B1173 (2010).

    [164] E. Miele, W.M. Dose, I. Manyakin, M.H. Frosz, Z. Ruff et al., Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 13, 1651 (2022).

    [165] F. Rittweger, C. Modrzynski, P. Schiepel, K.-R. Riemschneider, Self-compensation of cross influences using spectral transmission ratios for optical fiber sensors in lithium-ion batteries. In 2021 IEEE Sensors Applications Symposium (SAS). Sundsvall, Sweden. IEEE, 1–6 (2021).

    [166] J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020).

    [167] M.F. Sgroi, M. Dotoli, M. Giuliano, G. Nicol, F. Parussa et al., Smart batteries: requirements of the automotive world. In 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive). Bologna, Italy. IEEE, (2021), 42–47.

    [168] H. Zhang, D. Ren, H. Ming, W. Zhang, G. Cao et al., Digital twin enables rational design of ultrahigh-power lithium-ion batteries. Adv. Energy Mater. 13(1), 2202660 (2022).

    [169] T. Vegge, J.-M. Tarascon, K. Edström, Toward better and smarter batteries by combining AI with multisensory and self-healing approaches. Adv. Energy Mater. 11, 2100362 (2021).

    [170] Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi et al., Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J. Am. Chem. Soc. 129, 6396–6397 (2007).

    [171] M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik et al., Rechargeable batteries of the future: the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12, 2102904 (2022).

    [172] J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud et al., A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 (2022).

    [173] R. Narayan, C. Laberty-Robert, J. Pelta, J.-M. Tarascon, R. Dominko, Self-healing: an emerging technology for next-generation smart batteries. Adv. Energy Mater. 12, 2102652 (2022).

    [174] A. Benayad, D. Diddens, A. Heuer, A.N. Krishnamoorthy, M. Maiti et al., High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12, 2102678 (2022).

    [175] D. Atkins, E. Ayerbe, A. Benayad, F.G. Capone, E. Capria et al., Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives. Adv. Energy Mater. 12, 2102687 (2022).

    [176] S. Clark, F.L. Bleken, S. Stier, E. Flores, C.W. Andersen et al., Toward a unified description of battery data. Adv. Energy Mater. 12, 2102702 (2022).

    [177] E. Ayerbe, M. Berecibar, S. Clark, A.A. Franco, J. Ruhland, Digitalization of battery manufacturing: current status, challenges, and opportunities. Adv. Energy Mater. 12, 2102696 (2022).

    [178] A. Bhowmik, M. Berecibar, M. Casas-Cabanas, G. Csanyi, R. Dominko et al., Implications of the BATTERY 2030+ AI-assisted toolkit on future low-TRL battery discoveries and chemistries. Adv. Energy Mater. 12, 2102698 (2022).

    [179] Ministry of Industry and Information Technology of China, Key Special Projects for Energy Storage and Smart Grid. (2021). https://www.miit.gov.cn/zwgk/jytafwgk/art/2021/art_1e9ad802670d4517affdd7ea85495e57.html

    Yiding Li, Li Wang, Youzhi Song, Wenwei Wang, Cheng Lin, Xiangming He. Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries[J]. Nano-Micro Letters, 2024, 16(1): 154
    Download Citation