• Advanced Photonics
  • Vol. 6, Issue 1, 016003 (2024)
Giorgio Tortarolo1、†, Alessandro Zunino1, Simonluca Piazza1、2, Mattia Donato1, Sabrina Zappone1、3, Agnieszka Pierzyńska-Mach4, Marco Castello1、2、*, and Giuseppe Vicidomini1、*
Author Affiliations
  • 1Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, Genoa, Italy
  • 2Genoa Instruments, Genoa, Italy
  • 3University of Genoa, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Genoa, Italy
  • 4Istituto Italiano di Tecnologia, Nanoscopy and NIC@IIT, Genoa, Italy
  • show less
    DOI: 10.1117/1.AP.6.1.016003 Cite this Article Set citation alerts
    Giorgio Tortarolo, Alessandro Zunino, Simonluca Piazza, Mattia Donato, Sabrina Zappone, Agnieszka Pierzyńska-Mach, Marco Castello, Giuseppe Vicidomini, "Compact and effective photon-resolved image scanning microscope," Adv. Photon. 6, 016003 (2024) Copy Citation Text show less
    References

    [1] I. M. Antolovic, C. Bruschini, E. Charbon. Dynamic range extension for photon counting arrays. Opt. Express, 26, 22234(2018).

    [2] M. Buttafava et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica, 7, 755(2020).

    [3] E. Slenders et al. Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy. Biophys. Rep., 6, 100025(2021).

    [4] F. Zappa et al. Principles and features of single-photon avalanche diode arrays. Sens. Actuators A Phys., 140, 103-112(2007).

    [5] R. Tenne et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photonics, 13, 116-122(2018).

    [6] M. Castello et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods, 16, 175-178(2019).

    [7] A. Sroda et al. SOFISM: super-resolution optical fluctuation image scanning microscopy. Optica, 7, 1308(2020).

    [8] E. Slenders et al. Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light Sci. Appl., 10, 31(2021).

    [9] A. Rossetta et al. The BrightEyes-TTM as an open-source time-tagging module for democratising single-photon microscopy. Nat. Commun., 13, 7406(2022).

    [10] G. Tortarolo et al. Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat. Commun., 13, 7723(2022).

    [11] D. Bronzi et al. SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sens. J., 16, 3-12(2016).

    [12] C. Bruschini et al. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl., 8, 87(2019).

    [13] M. Bertero et al. Resolution in diffraction-limited imaging, a singular value analysis. IV. The case of uncertain localization or nonuniform illumination object. Opt. Acta Int. J. Opt., 31, 923-946(1984).

    [14] C. J. R. Sheppard. Super-resolution in confocal imaging. Optik, 80, 53-54(1988).

    [15] C. B. Müller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [16] S. V. Koho et al. Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. Biomed. Opt. Express, 11, 2905(2020).

    [17] L. Yu et al. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys., 9, 644450(2021).

    [18] H. Jia et al. Lifetime-based responsive probes: design and applications in biological analysis. Chem. Asian J., 17, e202200563(2022).

    [19] R. Datta et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt., 25, 071203(2020).

    [20] M. S. Frei et al. Live-cell fluorescence lifetime multiplexing using synthetic fluorescent probes. ACS Chem. Biol., 17, 1321-1327(2022).

    [21] R. Machado, J. Cabral, F. S. Alves. Recent developments and challenges in FPGA-based time-to-digital converters. IEEE Trans. Instrum. Meas., 68, 4205-4221(2019).

    [22] G. Lubin et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express, 27, 32863(2019).

    [23] R. A. Colyer, C. Lee, E. Gratton. A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc. Res. Tech., 71, 201-213(2008).

    [24] J. Lagarto et al. Development of low-cost instrumentation for single point autofluorescence lifetime measurements. J. Fluoresc., 27, 1643-1654(2017).

    [25] L. Lanzanò et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun., 6, 6701(2015).

    [26] G. Tortarolo et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale, 11, 1754-1761(2019).

    [27] G. Vicidomini et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS ONE, 8, e54421(2013).

    [28] I. Johnson. Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies(2010).

    [29] M. A. Digman et al. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J., 94, L14-L16(2008).

    [30] D. M. Jameson, E. Gratton, R. D. Hall. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl. Spectrosc. Rev., 20, 55-106(1984).

    [31] T. J. V. Prazeres et al. Accurate determination of the limiting anisotropy of rhodamine 101. Implications for its use as a fluorescence polarization standard. J. Phys. Chem. A, 112, 5034-5039(2008).

    [32] C. J. R. Sheppard, S. B. Mehta, R. Heintzmann. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett., 38, 2889-2892(2013).

    [33] P. J. Verveer, P. I. H. Bastiaens. Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data. J. Microsc., 209, 1-7(2003).

    [34] F. Fereidouni, A. N. Bader, H. C. Gerritsen. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Opt. Express, 20, 12729-12741(2012).

    [35] J. Bückers et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express, 19, 3130-3143(2011).

    [36] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [37] J. R. Moffitt, C. Osseforth, J. Michaelis. Time-gating improves the spatial resolution of STED microscopy. Opt. Express, 19, 4242-4254(2011).

    [38] G. Vicidomini et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods, 8, 571-573(2011).

    [39] I. C. Hernández et al. Efficient two-photon excitation stimulated emission depletion nanoscope exploiting spatiotemporal information. Neurophotonics, 6, 045004(2019).

    [40] Y.-I. Chen et al. Spatial resolution enhancement in photon-starved STED imaging using deep learning-based fluorescence lifetime analysis. Nanoscale, 15, 9449-9456(2023).

    [41] F. Garzetti et al. Time-to-digital converter IP-core for FPGA at state of the art. IEEE Access, 9, 85515-85528(2021).

    [42] A. Zunino, M. Castello, G. Vicidomini. Reconstructing the image scanning microscopy dataset: an inverse problem. Inverse Probl., 39, 064004(2023).

    [43] M. Castello et al. Universal removal of anti-Stokes emission background in STED microscopy via FPGA-based synchronous detection. Rev. Sci. Instrum., 88, 053701(2017).

    Giorgio Tortarolo, Alessandro Zunino, Simonluca Piazza, Mattia Donato, Sabrina Zappone, Agnieszka Pierzyńska-Mach, Marco Castello, Giuseppe Vicidomini, "Compact and effective photon-resolved image scanning microscope," Adv. Photon. 6, 016003 (2024)
    Download Citation