• Photonics Research
  • Vol. 9, Issue 7, 1344 (2021)
Yuanbin Jin1、2, Jiangwei Yan1、2, Shah Jee Rahman1、2, Jie Li3, Xudong Yu1、2、4、*, and Jing Zhang1、5、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 4e-mail: jiance_yu@sxu.edu.cn
  • 5e-mail: jzhang74@sxu.edu.cn
  • show less
    DOI: 10.1364/PRJ.422975 Cite this Article Set citation alerts
    Yuanbin Jin, Jiangwei Yan, Shah Jee Rahman, Jie Li, Xudong Yu, Jing Zhang, "6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum," Photonics Res. 9, 1344 (2021) Copy Citation Text show less
    References

    [1] G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, A. A. Geraci. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys. Rev. A, 91, 051805(2015).

    [2] G. Ranjit, M. Cunningham, K. Casey, A. A. Geraci. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A, 93, 053801(2016).

    [3] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, L. Novotny. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett., 116, 243601(2016).

    [4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [5] M. Arndt, K. Hornberger. Testing the limits of quantum mechanical superpositions. Nat. Phys., 10, 271-277(2014).

    [6] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, M. Aspelmeyer. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [7] J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).

    [8] B. A. Stickler, K. Hornberger, M. S. Kim. Quantum rotations of nanoparticles(2021).

    [9] T. Li, S. Kheifets, D. Medellin, M. G. Raizen. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).

    [10] T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. T. Quan, T. Li. Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states. Phys. Rev. Lett., 120, 080602(2018).

    [11] J. Gieseler, R. Quidant, C. Dellago, L. Novotny. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358-364(2014).

    [12] J. Millen, T. Deesuwan, P. Barker, J. Anders. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol., 9, 425-429(2014).

    [13] T. Li, S. Kheifets, M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527-530(2011).

    [14] J. Gieseler, B. Deutsch, R. Quidant, L. Novotny. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603(2012).

    [15] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, M. Aspelmeyer. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA, 110, 14180-14185(2013).

    [16] P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, M. Arndt. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun., 4, 2743(2013).

    [17] J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, P. F. Barker. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett., 114, 123602(2015).

    [18] D. Windey, C. Gonzalez-Ballestero, P. Maurer, L. Novotny, O. Romero-Isart, R. Reimann. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett., 122, 123601(2019).

    [19] U. C. V. Delić, M. Reisenbauer, D. Grass, N. Kiesel, V. Vuletić, M. Aspelmeyer. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett., 122, 123602(2019).

    [20] Y. Zheng, G.-C. Guo, F.-W. Sun. Cooling of a levitated nanoparticle with digital parametric feedback. Appl. Phys. Lett., 115, 101105(2019).

    [21] F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, L. Novotny. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett., 124, 013603(2020).

    [22] A. Bassi, K. Lochan, S. Satin, T. P. Singh, H. Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85, 471-527(2013).

    [23] O. Romero-Isart. Quantum superposition of massive objects and collapse models. Phys. Rev. A, 84, 052121(2011).

    [24] J. Li, S. Zippilli, J. Zhang, D. Vitali. Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres. Phys. Rev. A, 93, 050102(2016).

    [25] D. Goldwater, M. Paternostro, P. F. Barker. Testing wave-function-collapse models using parametric heating of a trapped nanosphere. Phys. Rev. A, 94, 010104(2016).

    [26] A. Vinante, A. Pontin, M. Rashid, M. Toroš, P. F. Barker, H. Ulbricht. Testing collapse models with levitated nanoparticles: detection challenge. Phys. Rev. A, 100, 012119(2019).

    [27] D. Zheng, Y. Leng, X. Kong, R. Li, Z. Wang, X. Luo, J. Zhao, C.-K. Duan, P. Huang, J. Du, M. Carlesso, A. Bassi. Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator. Phys. Rev. Res., 2, 013057(2020).

    [28] A. Pontin, N. P. Bullier, M. Toroš, P. F. Barker. Ultranarrow-linewidth levitated nano-oscillator for testing dissipative wave-function collapse. Phys. Rev. Res., 2, 023349(2020).

    [29] T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, T. Li. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).

    [30] M. Rashid, M. Toroš, A. Setter, H. Ulbricht. Precession motion in levitated optomechanics. Phys. Rev. Lett., 121, 253601(2018).

    [31] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [32] S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Optically driven ultra-stable nanomechanical rotor. Nat. Commun., 8, 1670(2017).

    [33] F. Monteiro, S. Ghosh, E. C. van Assendelft, D. C. Moore. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A, 97, 051802(2018).

    [34] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [35] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [36] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol., 15, 89-93(2020).

    [37] B. Schrinski, B. A. Stickler, K. Hornberger. Collapse-induced orientational localization of rigid rotors. J. Opt. Soc. Am. B, 34, C1-C7(2017).

    [38] M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, A. Bassi. Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J. Phys., 20, 083022(2018).

    [39] M. Schuck, D. Steinert, T. Nussbaumer, J. W. Kolar. Ultrafast rotation of magnetically levitated macroscopic steel spheres. Sci. Adv., 4, e1701519(2018).

    [40] R. Zhao, A. Manjavacas, F. J. Garca de Abajo, J. B. Pendry. Rotational quantum friction. Phys. Rev. Lett., 109, 123604(2012).

    [41] F. Monteiro, W. Li, G. Afek, C.-L. Li, M. Mossman, D. C. Moore. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A, 101, 053835(2020).

    [42] F. Monteiro, S. Ghosh, A. G. Fine, D. C. Moore. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A, 96, 063841(2017).

    [43] Y. Jin, X. Yu, J. Zhang. Polarization-dependent center-of-mass motion of an optically levitated nanosphere. J. Opt. Soc. Am. B, 36, 2369-2377(2019).

    [44] J. Fremerey. Spinning rotor vacuum gauges. Vacuum, 32, 685-690(1982).

    [45] L. Shao, D. Andrén, S. Jones, P. Johansson, M. Käll. Optically controlled stochastic jumps of individual gold nanorod rotary motors. Phys. Rev. B, 98, 085404(2018).

    [46] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [47] J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, H. Ulbricht. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J. Opt. Soc. Am. B, 34, 1421-1428(2017).

    [48] C. P. Blakemore, D. Martin, A. Fieguth, A. Kawasaki, N. Priel, A. D. Rider, G. Gratta. Absolute pressure and gas species identification with an optically levitated rotor. J. Vac. Sci. Technol. B, 38, 024201(2020).

    Yuanbin Jin, Jiangwei Yan, Shah Jee Rahman, Jie Li, Xudong Yu, Jing Zhang, "6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum," Photonics Res. 9, 1344 (2021)
    Download Citation