[1] G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, A. A. Geraci. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys. Rev. A, 91, 051805(2015).
[2] G. Ranjit, M. Cunningham, K. Casey, A. A. Geraci. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A, 93, 053801(2016).
[3] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, L. Novotny. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett., 116, 243601(2016).
[4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).
[5] M. Arndt, K. Hornberger. Testing the limits of quantum mechanical superpositions. Nat. Phys., 10, 271-277(2014).
[6] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, M. Aspelmeyer. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).
[7] J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).
[8] B. A. Stickler, K. Hornberger, M. S. Kim. Quantum rotations of nanoparticles(2021).
[9] T. Li, S. Kheifets, D. Medellin, M. G. Raizen. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).
[10] T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. T. Quan, T. Li. Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states. Phys. Rev. Lett., 120, 080602(2018).
[11] J. Gieseler, R. Quidant, C. Dellago, L. Novotny. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358-364(2014).
[12] J. Millen, T. Deesuwan, P. Barker, J. Anders. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol., 9, 425-429(2014).
[13] T. Li, S. Kheifets, M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527-530(2011).
[14] J. Gieseler, B. Deutsch, R. Quidant, L. Novotny. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603(2012).
[15] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, M. Aspelmeyer. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA, 110, 14180-14185(2013).
[16] P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, M. Arndt. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun., 4, 2743(2013).
[17] J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, P. F. Barker. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett., 114, 123602(2015).
[18] D. Windey, C. Gonzalez-Ballestero, P. Maurer, L. Novotny, O. Romero-Isart, R. Reimann. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett., 122, 123601(2019).
[19] U. C. V. Delić, M. Reisenbauer, D. Grass, N. Kiesel, V. Vuletić, M. Aspelmeyer. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett., 122, 123602(2019).
[20] Y. Zheng, G.-C. Guo, F.-W. Sun. Cooling of a levitated nanoparticle with digital parametric feedback. Appl. Phys. Lett., 115, 101105(2019).
[21] F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, L. Novotny. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett., 124, 013603(2020).
[22] A. Bassi, K. Lochan, S. Satin, T. P. Singh, H. Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85, 471-527(2013).
[23] O. Romero-Isart. Quantum superposition of massive objects and collapse models. Phys. Rev. A, 84, 052121(2011).
[24] J. Li, S. Zippilli, J. Zhang, D. Vitali. Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres. Phys. Rev. A, 93, 050102(2016).
[25] D. Goldwater, M. Paternostro, P. F. Barker. Testing wave-function-collapse models using parametric heating of a trapped nanosphere. Phys. Rev. A, 94, 010104(2016).
[26] A. Vinante, A. Pontin, M. Rashid, M. Toroš, P. F. Barker, H. Ulbricht. Testing collapse models with levitated nanoparticles: detection challenge. Phys. Rev. A, 100, 012119(2019).
[27] D. Zheng, Y. Leng, X. Kong, R. Li, Z. Wang, X. Luo, J. Zhao, C.-K. Duan, P. Huang, J. Du, M. Carlesso, A. Bassi. Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator. Phys. Rev. Res., 2, 013057(2020).
[28] A. Pontin, N. P. Bullier, M. Toroš, P. F. Barker. Ultranarrow-linewidth levitated nano-oscillator for testing dissipative wave-function collapse. Phys. Rev. Res., 2, 023349(2020).
[29] T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, T. Li. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).
[30] M. Rashid, M. Toroš, A. Setter, H. Ulbricht. Precession motion in levitated optomechanics. Phys. Rev. Lett., 121, 253601(2018).
[31] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).
[32] S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Optically driven ultra-stable nanomechanical rotor. Nat. Commun., 8, 1670(2017).
[33] F. Monteiro, S. Ghosh, E. C. van Assendelft, D. C. Moore. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A, 97, 051802(2018).
[34] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).
[35] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).
[36] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol., 15, 89-93(2020).
[37] B. Schrinski, B. A. Stickler, K. Hornberger. Collapse-induced orientational localization of rigid rotors. J. Opt. Soc. Am. B, 34, C1-C7(2017).
[38] M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, A. Bassi. Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J. Phys., 20, 083022(2018).
[39] M. Schuck, D. Steinert, T. Nussbaumer, J. W. Kolar. Ultrafast rotation of magnetically levitated macroscopic steel spheres. Sci. Adv., 4, e1701519(2018).
[40] R. Zhao, A. Manjavacas, F. J. Garca de Abajo, J. B. Pendry. Rotational quantum friction. Phys. Rev. Lett., 109, 123604(2012).
[41] F. Monteiro, W. Li, G. Afek, C.-L. Li, M. Mossman, D. C. Moore. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A, 101, 053835(2020).
[42] F. Monteiro, S. Ghosh, A. G. Fine, D. C. Moore. Optical levitation of 10-ng spheres with nano-
[43] Y. Jin, X. Yu, J. Zhang. Polarization-dependent center-of-mass motion of an optically levitated nanosphere. J. Opt. Soc. Am. B, 36, 2369-2377(2019).
[44] J. Fremerey. Spinning rotor vacuum gauges. Vacuum, 32, 685-690(1982).
[45] L. Shao, D. Andrén, S. Jones, P. Johansson, M. Käll. Optically controlled stochastic jumps of individual gold nanorod rotary motors. Phys. Rev. B, 98, 085404(2018).
[46] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).
[47] J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, H. Ulbricht. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J. Opt. Soc. Am. B, 34, 1421-1428(2017).
[48] C. P. Blakemore, D. Martin, A. Fieguth, A. Kawasaki, N. Priel, A. D. Rider, G. Gratta. Absolute pressure and gas species identification with an optically levitated rotor. J. Vac. Sci. Technol. B, 38, 024201(2020).