• Nano-Micro Letters
  • Vol. 16, Issue 1, 139 (2024)
Yizhe Li1, Yajie Li1, Hao Sun1, Liyao Gao1, Xiangrong Jin1, Yaping Li1, Zhi LV1, Lijun Xu2、*, Wen Liu1、**, and Xiaoming Sun1、***
Author Affiliations
  • 1State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
  • 2Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023 Xinjiang Uygur Autonomous Region, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01347-y Cite this Article
    Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, Xiaoming Sun. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization[J]. Nano-Micro Letters, 2024, 16(1): 139 Copy Citation Text show less
    References

    [1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    [2] S.S. Ahmad Shah, T. Najam, M.S. Bashir, M.S. Javed, A.U. Rahman et al., Identification of catalytic active sites for durable proton exchange membrane fuel cell: catalytic degradation and poisoning perspectives. Small 18, e2106279 (2022).

    [3] Z. Miao, S. Li, C. Priest, T. Wang, G. Wu et al., Effective approaches for designing stable M-Nx/C oxygen-reduction catalysts for proton-exchange-membrane fuel cells. Adv. Mater. 34, e2200595 (2022).

    [4] S. Zuo, Z.-P. Wu, H. Zhang, X.W.D. Lou, Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 12, 2103383 (2022).

    [5] Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022).

    [6] C. Tang, Y. Zheng, M. Jaroniec, S.Z. Qiao, Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).

    [7] H.Q. Liang, T. Beweries, R. Francke, M. Beller, Molecular catalysts for the reductive homocoupling of CO2 towards C2+ compounds. Angew. Chem. Int. Ed. 61, e202200723 (2022).

    [8] T. Lu, H. Wang, Graphdiyne-supported metal electrocatalysts: from nanoparticles and cluster to single atoms. Nano Res. 15, 9764–9778 (2022).

    [9] V.H. Do, J.M. Lee, Orbital occupancy and spin polarization: from mechanistic study to rational design of transition metal-based electrocatalysts toward energy applications. ACS Nano 16, 17847–17890 (2022).

    [10] D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020).

    [11] F.M. Li, L. Huang, S. Zaman, W. Guo, H. Liu et al., Corrosion chemistry of electrocatalysts. Adv. Mater. 34, e2200840 (2022).

    [12] Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    [13] Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 (2021).

    [14] C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50, 7745–7778 (2021).

    [15] F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021).

    [16] Z. Chen, G. Zhang, Y. Wen, N. Chen, W. Chen et al., Atomically dispersed Fe-co bimetallic catalysts for the promoted electroreduction of carbon dioxide. Nano-Micro Lett. 14, 25 (2021).

    [17] D. Liu, Q. He, S. Ding, L. Song, Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10, 2001482 (2020).

    [18] H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35, e2210714 (2023).

    [19] L. Wang, D. Wang, Y. Li, Single-atom catalysis for carbon neutrality. Carbon Energy 4, 1021–1079 (2022).

    [20] R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao et al., Design of aligned porous carbon films with single-atom co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 33, e2103533 (2021).

    [21] D. Yang, J. Li, M. Xiao, C. Liu, W. Xing et al., Atomically dispersed metal catalysts towards nitrogen reduction for Ammonia: from homogeneous to heterogeneous. Chem. Eng. J. 468, 143776 (2023).

    [22] X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021).

    [23] T. Gu, D. Zhang, Y. Yang, C. Peng, D. Xue et al., Dual-sites coordination engineering of single atom catalysts for full-temperature adaptive flexible ultralong-life solid-state Zn–air batteries. Adv. Funct. Mater. 33, 2212299 (2023).

    [24] X. Yao, Y. Zhu, T. Xia, Z. Han, C. Du et al., Tuning carbon defect in copper single-atom catalysts for efficient oxygen reduction. Small 19, e2301075 (2023).

    [25] G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12, 6335 (2021).

    [26] W.-H. Li, J. Yang, D. Wang, Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. 61, e202213318 (2022).

    [27] X. Ding, C. Jia, P. Ma, H. Chen, J. Xue et al., Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution. Nano Lett. 23, 3309–3316 (2023).

    [28] D.C. Zhong, Y.N. Gong, C. Zhang, T.B. Lu, Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 52, 3170–3214 (2023).

    [29] L. Liu, A. Corma, Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 123, 4855–4933 (2023).

    [30] Y. Wang, B.J. Park, V.K. Paidi, R. Huang, Y. Lee et al., Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022).

    [31] S. Li, A. Guan, C. Yang, C. Peng, X. Lv et al., Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products. ACS Mater. Lett. 3, 1729–1737 (2021).

    [32] Z. Liang, M. Luo, M. Chen, C. Liu, S.G. Peera et al., Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction. J. Colloid Interface Sci. 568, 54–62 (2020).

    [33] R. Li, J. Zhao, B. Liu, D. Wang, Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 36, e2308653 (2023).

    [34] Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    [35] M. Tamtaji, Q. Peng, T. Liu, X. Zhao, Z. Xu et al., Non-bonding interaction of dual atom catalysts for enhanced oxygen reduction reaction. Nano Energy 108, 108218 (2023).

    [36] S. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei et al., The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton-/anion- exchange membrane fuel cells. Appl. Catal. B Environ. 317, 121770 (2022).

    [37] T. Ding, X. Liu, Z. Tao, T. Liu, T. Chen et al., Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021).

    [38] F. Wang, Y. Gao, H. Fu, S.-S. Liu, Y. Wei et al., Almost 100% electron transfer regime over Fe–Co dual-atom catalyst toward pollutants removal: regulation of peroxymonosulfate adsorption mode. Appl. Catal. B Environ. 339, 123178 (2023).

    [39] S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen et al., Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 14, 3634 (2023).

    [40] W. Zhou, H. Su, W. Cheng, Y. Li, J. Jiang et al., Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 13, 6414 (2022).

    [41] Q. Miao, Z. Chen, X. Li, M. Liu, G. Liu et al., Construction of catalytic Fe2N5P sites in covalent organic framework-derived carbon for catalyzing the oxygen reduction reaction. ACS Catal. 13, 11127–11135 (2023).

    [42] A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye et al., An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem. Int. Ed. 60, 19262–19271 (2021).

    [43] Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang et al., Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 45, 805–813 (2022).

    [44] C. Hu, Y. Wang, J. Chen, H.-F. Wang, K. Shen et al., Main-group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO2 reduction. Small 18, e2201391 (2022).

    [45] X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu et al., Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat. Commun. 13, 5337 (2022).

    [46] X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao et al., Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 14, 291 (2023).

    [47] L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu et al., Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 35, e2209590 (2023).

    [48] Y. Zhou, W. Yang, W. Utetiwabo, Y.-M. Lian, X. Yin et al., Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 11, 1404–1410 (2020).

    [49] L. Bai, C.S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

    [50] Z. Fan, R. Luo, Y. Zhang, B. Zhang, P. Zhai et al., Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202216326 (2023).

    [51] L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59, 13923–13928 (2020).

    [52] Z. Wang, M. Cheng, Y. Liu, Z. Wu, H. Gu et al., Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/ electro-catalysis. Angew. Chem. Int. Ed. 62, e202301483 (2023).

    [53] H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao et al., Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    [54] J. Wang, E. Kim, D.P. Kumar, A.P. Rangappa, Y. Kim et al., Highly durable and fully dispersed cobalt diatomic site catalysts for CO2 photoreduction to CH4. Angew. Chem. Int. Ed. 61, e202113044 (2022).

    [55] P. Xie, J. Ding, Z. Yao, T. Pu, P. Zhang et al., Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 13, 1375 (2022).

    [56] W. Wan, Y. Zhao, S. Wei, C.A. Triana, J. Li et al., Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 (2021).

    [57] Z. Zhao, W. Zhou, D. Lin, L. Zhu, B. Xing et al., Construction of dual active sites on diatomic metal (FeCo–N/C-x) catalysts for enhanced Fenton-like catalysis. Appl. Catal. B Environ. 309, 121256 (2022).

    [58] Z. Liang, L. Song, M. Sun, B. Huang, Y. Du, Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 7, eabl4915 (2021).

    [59] L. Bai, C.-S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    [60] M. Feng, X. Wu, H. Cheng, Z. Fan, X. Li et al., Well-defined Fe–Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 9, 23817–23827 (2021).

    [61] M. Chen, D. Kumar, C.W. Yi, D.W. Goodman, The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005).

    [62] P. Sabatier, La Catalyse En Chimie Organique (Berange, Paris, 1920)

    [63] A. Kumar, K. Sun, X. Duan, S. Tian, X. Sun, Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction. Chem. Mater. 34, 5598–5606 (2022).

    [64] S. Tian, B. Wang, W. Gong, Z. He, Q. Xu et al., Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021).

    [65] X. Zhao, K. Zhao, Y. Liu, Y. Su, S. Chen et al., Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe–Fe catalyst. ACS Catal. 12, 11412–11420 (2022).

    [66] H. Huang, D. Yu, F. Hu, S.C. Huang, J. Song et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 (2022).

    [67] W. Liu, J. Liu, X. Liu, H. Zheng, J. Liu, Bioinspired hydrophobic single-atom catalyst with flexible sulfur motif for aqueous-phase hydrogenative transformation. ACS Catal. 13, 530–539 (2023).

    [68] V. Giulimondi, S. Mitchell, J. Pérez-Ramírez, Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 13, 2981–2997 (2023).

    [69] Y. He, Y. Jia, B. Yu, Y. Wang, H. Li et al., Heteroatom coordination regulates iron single-atom-catalyst with superior oxygen reduction reaction performance for aqueous Zn-air battery. Small 19, e2206478 (2023).

    [70] Y. Xie, X. Chen, K. Sun, J. Zhang, W.-H. Lai et al., Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202301833 (2023).

    [71] J. Li, Y. Zou, Z. Li, S. Fu, Y. Lu et al., Modulating the electronic coordination configuration and d-band center in Homo-diatomic Fe2N6 catalysts for enhanced peroxymonosulfate activation. ACS Appl. Mater. Interfaces 14, 37865–37877 (2022).

    [72] Q. Hao, H.X. Zhong, J.Z. Wang, K.H. Liu, J.M. Yan et al., Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022).

    [73] M. Sun, T. Wu, A.W. Dougherty, M. Lam, B. Huang et al., Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 11, 2003796 (2021).

    [74] Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019).

    [75] H. Wu, J. Yan, X. Xu, Q. Yuan, J. Wang et al., Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst. Chem. Eng. J. 428, 132611 (2022).

    [76] Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie et al., Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020).

    [77] D. Sun, Q. Bi, M. Deng, B. Jia, F. Huang, Atomically dispersed Pd–Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem. Commun. 57, 5670–5673 (2021).

    [78] Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 240, 112–121 (2019).

    [79] M. Liu, N. Li, S. Cao, X. Wang, X. Lu et al., A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 34, e2107421 (2022).

    [80] Y. Wang, X. Wan, J. Liu, W. Li, Y. Li et al., Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 15, 3082–3089 (2022).

    [81] X. Zhou, J. Gao, Y. Hu, Z. Jin, K. Hu et al., Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 22, 3392–3399 (2022).

    [82] J. Hao, Z. Zhuang, J. Hao, C. Wang, S. Lu et al., Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 12, 2200579 (2022).

    [83] Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021).

    [84] F. Kong, R. Si, N. Chen, Q. Wang, J. Li et al., Origin of hetero-nuclear Au-Co dual atoms for efficient acidic oxygen reduction. Appl. Catal. B Environ. 301, 120782 (2022).

    [85] Z. Pei, X.F. Lu, H. Zhang, Y. Li, D. Luan et al., Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/co dual sites. Angew. Chem. Int. Ed. 61, e202207537 (2022).

    [86] J. Wang, C.X. Zhao, J.N. Liu, Y.W. Song, J.Q. Huang et al., Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 104, 107927 (2022).

    [87] H. Li, J. Wang, R. Qi, Y. Hu, J. Zhang et al., Enhanced Fe3 d delocalization and moderate spin polarization in Fe Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Catal. B Environ. 285, 119778 (2021).

    [88] H. Li, S. Di, P. Niu, S. Wang, J. Wang et al., A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 15, 1601–1610 (2022).

    [89] T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew. Chem. Int. Ed. 61, e202201007 (2022).

    [90] K. Wang, J. Liu, Z. Tang, L. Li, Z. Wang et al., Establishing structure/property relationships in atomically dispersed Co–Fe dual site M-Nx catalysts on microporous carbon for the oxygen reduction reaction. J. Mater. Chem. A 9, 13044–13055 (2021).

    [91] F. Pan, T. Jin, W. Yang, H. Li, Y. Cao et al., Theory-guided design of atomic Fe–Ni dual sites in N, P-co-doped C for boosting oxygen evolution reaction. Chem. Catal. 1, 734–745 (2021).

    [92] S. Zhang, Y. Wu, Y.X. Zhang, Z. Niu, Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci. China Chem. 64, 1908–1922 (2021).

    [93] W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen et al., Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865–2878 (2019).

    [94] S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    [95] Y.S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013–16022 (2020).

    [96] K. Leng, J. Zhang, Y. Wang, D. Li, L. Bai et al., Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts (adv. funct. mater. 41/2022). Adv. Funct. Mater. 32, 2270227 (2022).

    [97] H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    [98] J. Zhang, Q.A. Huang, J. Wang, J. Wang, J. Zhang et al., Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 41, 783–798 (2020).

    [99] Y. Hu, Z. Li, B. Li, C. Yu, Recent progress of diatomic catalysts: general design fundamentals and diversified catalytic applications. Small 18, e2203589 (2022).

    [100] L. Yan, P. Li, Q. Zhu, A. Kumar, K. Sun et al., Atomically precise electrocatalysts for oxygen reduction reaction. Chem 9, 280–342 (2023).

    [101] M. Fan, J. Cui, J. Wu, R. Vajtai, D. Sun et al., Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 16, e1906782 (2020).

    [102] D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy 58, 277–283 (2019).

    [103] J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    [104] M. Wang, X. Zheng, D. Qin, M. Li, K. Sun et al., Atomically dispersed CoN3 C1-TeN1 C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 18, e2201974 (2022).

    [105] X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020).

    [106] L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757–10763 (2018).

    [107] C. Ye, N. Zhang, D. Wang, Y. Li, Single atomic site catalysts: synthesis, characterization, and applications. Chem. Commun. 56, 7687–7697 (2020).

    [108] D. Yao, C. Tang, X. Zhi, B. Johannessen, A. Slattery et al., Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 35, e2209386 (2023).

    [109] M. Wang, L. Árnadóttir, Z.J. Xu, Z. Feng, In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11, 47 (2019).

    [110] G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun et al., A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317–1325 (2019).

    [111] I.C. Gerber, P. Serp, A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 120, 1250–1349 (2020).

    [112] N. Zhang, T. Zhou, J. Ge, Y. Lin, Z. Du et al., High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 3, 509–521 (2020).

    [113] Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    [114] T. He, A.R. Puente Santiago, A. Du, Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 388, 77–83 (2020).

    [115] J. Wang, R. You, C. Zhao, W. Zhang, W. Liu et al., N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 10, 2754–2761 (2020).

    [116] M.M. Mohideen, A.V. Radhamani, S. Ramakrishna, Y. Wei, Y. Liu, Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. J. Energy Chem. 69, 466–489 (2022).

    [117] P. Cui, L. Zhao, Y. Long, L. Dai, C. Hu, Carbon-based electrocatalysts for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 62, 2218269 (2023).

    [118] A. Kundu, T. Kuila, N.C. Murmu, P. Samanta, S. Das, Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Mater. Horiz. 10, 745–787 (2023).

    [119] M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    [120] B. Xu, Y. Zhang, L. Li, Q. Shao, X. Huang, Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord. Chem. Rev. 459, 214388 (2022).

    [121] Y. Hong, L. Li, B. Huang, X. Tang, W. Zhai et al., Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization. Adv. Energy Mater. 11, 2100866 (2021).

    [122] C. Gao, S. Mu, R. Yan, F. Chen, T. Ma et al., Recent advances in ZIF-derived atomic metal-N-C electrocatalysts for oxygen reduction reaction: synthetic strategies, active centers, and stabilities. Small 18, e2105409 (2022).

    [123] X. Jin, Y. Li, H. Sun, X. Gao, J. Li, Z. Lü, W. Liu, X. Sun, Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells. Nano Res. 16(5), 6531–6536 (2023).

    [124] M. Xiao, H. Zhang, Y. Chen, J. Zhu, L. Gao et al., Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 46, 396–403 (2018).

    [125] F. Wang, W. Xie, L. Yang, D. Xie, S. Lin, Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 396, 215–223 (2021).

    [126] J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao et al., Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11, 3375–3379 (2018).

    [127] S. Yang, X. Xue, J. Zhang, X. Liu, C. Dai et al., Molten salt “boiling” synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: an oxygen reduction catalyst with dense active sites and high stability. Chem. Eng. J. 395, 125064 (2020).

    [128] Y. He, X. Yang, Y. Li, L. Liu, S. Guo et al., Atomically dispersed Fe–co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries. ACS Catal. 12, 1216–1227 (2022).

    [129] J. Xu, S. Lai, D. Qi, M. Hu, X. Peng et al., Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 14, 1374–1381 (2021).

    [130] J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma et al., Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 8, 3686–3691 (2020).

    [131] S.Y. Lin, L.X. Xia, Y. Cao, H.L. Meng, L. Zhang et al., Electronic regulation of ZnCo dual-atomic active sites entrapped in 1D@2D hierarchical N-doped carbon for efficient synergistic catalysis of oxygen reduction in Zn-air battery. Small 18, e2107141 (2022).

    [132] G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021).

    [133] S. Sarkar, A. Biswas, T. Purkait, M. Das, N. Kamboj et al., Unravelling the role of Fe-Mn binary active sites electrocatalyst for efficient oxygen reduction reaction and rechargeable Zn-air batteries. Inorg. Chem. 59, 5194–5205 (2020).

    [134] M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 274, 119091 (2020).

    [135] C. Du, Y. Gao, H. Chen, P. Li, S. Zhu et al., A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 8, 16994–17001 (2020).

    [136] X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, e1905622 (2019).

    [137] Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62, e202219191 (2023).

    [138] T. Tang, Y. Wang, J. Han, Q. Zhang, X. Bai et al., Dual-atom Co-Fe catalysts for oxygen reduction reaction. Chin. J. Catal. 46, 48–55 (2023).

    [139] Y. Yao, T. Jiang, S.Y. Lim, C. Frandsen, Z. Li et al., Universal synthesis of half-metallic diatomic catalysts for efficient oxygen reduction electrocatalysis. Small 19, e2304655 (2023).

    [140] W.-D. Zhang, L. Zhou, Y.-X. Shi, Y. Liu, H. Xu et al., Dual-atom catalysts derived from a preorganized covalent organic framework for enhanced electrochemical oxygen reduction. Angew. Chem. Int. Ed. 62, e202304412 (2023).

    [141] L. Zhang, Y. Dong, L. Li, L. Wei, J. Su et al., Enhanced oxygen reduction activity and stability of double-layer nitrogen-doped carbon catalyst with abundant Fe-Co dual-atom sites. Nano Energy 117, 108854 (2023).

    [142] X. Sheng, Z. Mei, Q. Jing, X. Zou, L. Wang et al., Revealing the orbital interactions between dissimilar metal sites during oxygen reduction process. Small (2023).

    [143] Z. Li, S. Ji, C. Wang, H. Liu, L. Leng et al., Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 35, e2300905 (2023).

    [144] C. Fu, X. Qi, L. Zhao, T. Yang, Q. Xue et al., Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction. Appl. Catal. B Environ. 335, 122875 (2023).

    [145] Z. Xiao, P. Sun, Z. Qiao, K. Qiao, H. Xu et al., Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells. Chem. Eng. J. 446, 137112 (2022).

    [146] C. Chen, Y. Li, A. Huang, X. Liu, J. Li et al., Engineering molecular heterostructured catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 145, 21273–21283 (2023).

    [147] F. Kong, M. Wang, Y. Huang, G. Meng, M. Chen et al., Cu-N-bridged Fe-3d electron state regulations for boosted oxygen reduction in flexible battery and PEMFC. Energy Storage Mater. 54, 533–542 (2023).

    [148] Q. Li, L. Luo, C. Xu, S. Song, Y. Wang et al., Palladium enhanced iron active site - an efficient dual-atom catalyst for oxygen electroreduction. Small 19, e2303321 (2023).

    [149] P. Zhu, X. Xiong, X. Wang, C. Ye, J. Li et al., Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 22, 9507–9515 (2022).

    [150] B. Yang, H. Yu, X. Jia, Q. Cheng, Y. Ren et al., Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells. ACS Appl. Mater. Interfaces 15, 23316–23327 (2023).

    [151] S. Zhang, Q. Fan, R. Xia, T.J. Meyer, CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255–264 (2020).

    [152] J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 (2023).

    [153] D.H. Nam, P. De Luna, A. Rosas-Hernández, A. Thevenon, F. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    [154] J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    [155] Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019).

    [156] L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7, 1284–1291 (2022).

    [157] P. Saha, S. Amanullah, A. Dey, Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 55, 134–144 (2022).

    [158] K. Rossi, R. Buonsanti, Shaping copper nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction. Acc. Chem. Res. 55, 629–637 (2022).

    [159] Y. Ouyang, L. Shi, X. Bai, Q. Li, J. Wang, Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 11, 1807–1813 (2020).

    [160] N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin et al., A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 13388–13393 (2021).

    [161] J.D. Yi, X. Gao, H. Zhou, W. Chen, Y. Wu, Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem. Int. Ed. 61, e202212329 (2022).

    [162] Y.N. Gong, C.Y. Cao, W.J. Shi, J.H. Zhang, J.H. Deng et al., Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202215187 (2022).

    [163] X.Y. Zhang, J.Y. Xie, Y. Ma, B. Dong, C.G. Liu et al., An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction. Chem. Eng. J. 430, 132312 (2022).

    [164] Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34, 2108133 (2022).

    [165] H.S. Jadhav, H.A. Bandal, S. Ramakrishna, H. Kim, Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Adv. Mater. 34, e2107072 (2022).

    [166] J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5, e2000988 (2021).

    [167] P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 (2022).

    [168] Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022).

    [169] P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022).

    [170] M. Jiao, Z. Chen, N. Wang, L. Liu, DFT calculation screened CoCu and CoFe dual-atom catalysts with remarkable hydrogen evolution reaction activity. Appl. Catal. B Environ. 324, 122244 (2023).

    [171] L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    [172] A. Kumar, V.Q. Bui, J. Lee, L. Wang, A.R. Jadhav et al., Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 12, 6766 (2021).

    [173] W. Bi, N. Shaigan, A. Malek, K. Fatih, E. Gyenge et al., Strategies in cell design and operation for the electrosynthesis of ammonia: status and prospects. Energy Environ. Sci. 15, 2259–2287 (2022).

    [174] D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1604799 (2017).

    [175] I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30, 2487–2504 (2005).

    [176] X. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    [177] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023).

    [178] B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    [179] S. Chen, X. Liu, J. Xiong, L. Mi, X.Z. Song et al., Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. J. Mater. Chem. A 10, 6927–6949 (2022).

    [180] R. Hu, Y. Li, Q. Zeng, F. Wang, J. Shang, Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: search for the optimal coordination atoms. Chemsuschem 13, 3636–3644 (2020).

    [181] Y. Xu, Z. Cai, P. Du, J. Zhou, Y. Pan et al., Taming the challenges of activity and selectivity in the electrochemical nitrogen reduction reaction using graphdiyne-supported double-atom catalysts. J. Mater. Chem. A 9, 8489–8500 (2021).

    [182] Y. Yang, C. Hu, J. Shan, C. Cheng, L. Han et al., Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 62, e202300989 (2023).

    [183] X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen et al., Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709–5721 (2020).

    [184] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui et al., Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 60, 345–350 (2021).

    [185] F. He, Z. Wang, S. Wei, J. Zhao, Adsorption and catalytic activation of N2 molecule on iron dimer supported by different two-dimensional carbon-based substrates: a computational study. Appl. Surf. Sci. 506, 144943 (2020).

    [186] H. Wu, W. Zheng, R. Zhu, M. Zhou, X. Ren et al., Modulating coordination structures and metal environments of MOFs-Engineered electrocatalysts for water electrolysis. Chem. Eng. J. 452, 139475 (2023).

    [187] C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023).

    [188] J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022).

    [189] K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17, e2100129 (2021).

    [190] B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023).

    [191] T. Liu, Y. Wang, Y. Li, Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 32, 2207110 (2022).

    [192] Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang et al., Axial phosphate coordination in co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, e2206107 (2023).

    [193] Z. Zhang, C. Feng, X. Li, C. Liu, D. Wang et al., In-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution. Nano Lett. 21, 4795–4801 (2021).

    [194] C. Fang, J. Zhou, L. Zhang, W. Wan, Y. Ding et al., Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 (2023).

    [195] J.X. Wu, W.X. Chen, C.T. He, K. Zheng, L.L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023).

    [196] C. Chen, M. Sun, F. Zhang, H. Li, M. Sun et al., Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 16, 1685–1696 (2023).

    [197] M. Hren, M. Božič, D. Fakin, K.S. Kleinschek, S. Gorgieva, Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain. Energy Fuels 5, 604–637 (2021).

    [198] Y. Yang, C.R. Peltier, R. Zeng, R. Schimmenti, Q. Li et al., Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117–6321 (2022).

    [199] B.P. Setzler, Z. Zhuang, J.A. Wittkopf, Y. Yan, Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    [200] Z.C. Yao, T. Tang, Z. Jiang, L. Wang, J.S. Hu et al., Electrocatalytic hydrogen oxidation in alkaline media: from mechanistic insights to catalyst design. ACS Nano 16, 5153–5183 (2022).

    [201] L. Han, P. Ou, W. Liu, X. Wang, H.T. Wang et al., Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 8, eabm3779 (2022).

    [202] Z.H. Lyu, J. Fu, T. Tang, J. Zhang, J.S. Hu, Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem 5, 100093 (2023).

    [203] M. Zhang, H. Li, X. Duan, P. Zou, G. Jeerh et al., An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis. Adv. Sci. 8, e2101299 (2021).

    [204] Y. Tian, Z. Mao, L. Wang, J. Liang, Green chemistry: advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 4, 2200266 (2023).

    [205] S.I. Venturini, D.R. Martins de Godoi, J. Perez, Challenges in electrocatalysis of ammonia oxidation on platinum surfaces: discovering reaction pathways. ACS Catal. 13, 10835–10845 (2023).

    [206] Y.J. Shih, C.H. Hsu, Kinetics and highly selective N2 conversion of direct electrochemical ammonia oxidation in an undivided cell using NiCo oxide nanoparticle as the anode and metallic Cu/Ni foam as the cathode. Chem. Eng. J. 409, 128024 (2021).

    [207] F. Habibzadeh, S.L. Miller, T.W. Hamann, M.R. Smith, 3rd Homogeneous electrocatalytic oxidation of ammonia to N2 under mild conditions. Proc. Natl. Acad. Sci. U.S.A. 116, 2849–2853 (2019).

    [208] H. Zhang, H. Wang, L. Zhou, Q. Li, X. Yang et al., Efficient and highly selective direct electrochemical oxidation of ammonia to dinitrogen facilitated by NiCu diatomic site catalysts. Appl. Catal. B Environ. 328, 122544 (2023).

    [209] F. Li, X. Liu, Z. Chen, 1 + 1’ > 2: heteronuclear biatom catalyst outperforms its homonuclear counterparts for CO oxidation. Small Meth. 3, 1800480 (2019).

    [210] S. Bac, S. Mallikarjun Sharada, CO oxidation with atomically dispersed catalysts: insights from the energetic span model. ACS Catal. 12, 2064–2076 (2022).

    [211] D. Li, H. Xu, J. Zhu, D. Cao, Fast identification of the stability of atomically dispersed bi-atom catalysts using a structure descriptor-based model. J. Mater. Chem. A 10, 1451–1462 (2022).

    [212] J. Zhao, J. Zhao, F. Li, Z. Chen, Copper dimer supported on a C2N layer as an efficient electrocatalyst for CO2 reduction reaction: a computational study. J. Phys. Chem. C 122, 19712–19721 (2018).

    [213] L. Wang, X. Gao, S. Wang, C. Chen, J. Song et al., Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 145, 13462–13468 (2023).

    Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, Xiaoming Sun. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization[J]. Nano-Micro Letters, 2024, 16(1): 139
    Download Citation