• Matter and Radiation at Extremes
  • Vol. 8, Issue 3, 038401 (2023)
Yuanyuan Wang1、*, Zhihui Li1, Shifeng Niu2, Wencai Yi3, Shuang Liu1, Zhen Yao1, and Bingbing Liu1
Author Affiliations
  • 1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People’s Republic of China
  • 2Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, People’s Republic of China
  • 3Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
  • show less
    DOI: 10.1063/5.0136443 Cite this Article
    Yuanyuan Wang, Zhihui Li, Shifeng Niu, Wencai Yi, Shuang Liu, Zhen Yao, Bingbing Liu. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401 Copy Citation Text show less
    References

    [1] X. Q.Chen, C. L.Fu, R.Podloucky. Bonding and strength of solid nitrogen in the cubic gauche (cg-N) structure. Phys. Rev. B, 77, 064103(2008).

    [2] Z.Pang, M.Sun, Y.Yin. Predicted new structures of polymeric nitrogen under 100–600 GPa. Comput. Mater. Sci., 98, 399-404(2015).

    [3] T.Cui, D.Duan, X.Huang, X.Jin, B.Liu, F.Tian, L.Wang, X.Wang. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures. New J. Phys., 15, 013010(2013).

    [4] T.Cui, B.Liu, F.Tian, L.Wang, X.Wang, G.Zou. Structural stability of polymeric nitrogen: A first-principles investigation. J. Chem. Phys., 132, 024502(2010).

    [5] S. V.Bondarchuk, B. F.Minaev. Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties. Comput. Mater. Sci., 133, 122-129(2017).

    [6] J.Hooper, A.Hu, T.Woo, F.Zahariev, F.Zhang. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation. Phys. Rev. B, 72, 214108(2005).

    [7] J.Kotakoski, Z.Li, Y.Ma, A. R.Oganov, Y.Xie. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett., 102, 065501(2009).

    [8] T.Cui, Z.He, J. F.Li, B. B.Liu, Z. M.Liu, Y. M.Ma, X. L.Wang, G. T.Zou. Prediction of a new layered phase of nitrogen from first-principles simulations. J. Phys.: Condens. Matter, 19, 425226(2007).

    [9] K.Albe, J.Kotakoski. First-principles calculations on solid nitrogen: A comparative study of high-pressure phases. Phys. Rev. B, 77, 144109(2008).

    [10] S.Chiesa, R. M.Martin, W. D.Mattson, D.Sanchez-Portal. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett., 93, 125501(2004).

    [11] L.Chen, T.Cui, J.Li, J.Lv, Y.Ma, M.Miao, C. J.Pickard, X.Wang, Y.Wang, X.Zhong. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett., 109, 175502(2012).

    [12] R.Boehler, D. A.Dzivenko, M. I.Eremets, A. G.Gavriliuk, I. A.Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).

    [13] M.Kim, J.Smith, D.Tomasino, C. S.Yoo. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).

    [14] G.Geneste, D.Laniel, P.Loubeyre, M.Mezouar, G.Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).

    [15] S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, D.Laniel, V.Milman, A.Pakhomova, V.Prakapenka, B.Winkler. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).

    [16] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).

    [17] M.Bykov, E.Bykova, S.Chariton, I.Chepkasov, A. F.Goncharov, E.Greenberg, S. Q.Jiang, A. R.Oganov, V. B.Prakapenka, A.Samtsevich, Y.Wang, X.Zhang. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem., 14, 794-800(2022).

    [18] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, E.Koemets, D.Laniel, B.Winkler. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).

    [19] J. C.Crowhurst, I. I.Oleynik, V. B.Prakapenka, E.Stavrou, B. A.Steele, J. M.Zaug. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2016).

    [20] A. N.Aslandukov, A. A.Aslandukova, S.Chariton, N.Dubrovinskaia, L. S.Dubrovinsky, T.Fedotenko, K.Glazyrin, D.Laniel, V. B.Prakapenka. High-pressure synthesis of the beta-Zn3N2 nitride and the alpha-ZnN4 and beta-ZnN4 polynitrogen compounds. Inorg. Chem., 60, 14594-14601(2021).

    [21] A. I.Abrikosov, I. A.Abrikosov, T.Bin Masood, M.Bykov, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, A. F.Goncharov, M.Hanfland, I.Hotz, M. I.Katsnelson, D.Laniel, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka, A. N.Rudenko, J. S.Smith, F.Tasnadi. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).

    [22] Q.Wei, H.Yan, M.Zhang. Une xpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M = Ti, Zr, and Hf). J. Alloys Compd., 774, 918-925(2019).

    [23] H.Dong, X.Dong, X.Li, J. M.McMahon, A. R.Oganov, J.Zhang. Theoretical study of the crystal structure, stability, and properties of phases in the V-N system. Phys. Rev. B, 104, 134111(2021).

    [24] J.Botana, L.Chen, T.Cui, J.Li, L.Liu, M.Miao, X.Wang, M.Zhang, H.Zhu. Polymerization of nitrogen in lithium azide. J. Chem. Phys., 139, 164710(2013).

    [25] L.Chen, J.Li, H.Lin, X.Wang, H.Zhu. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys., 141, 044717(2014).

    [26] Q.Li, H.Wang, Z.Wu, K.Yin, M.Zhang, X.Zhang. Structural and electronic properties of sodium azide at high pressure: A first principles study. Solid State Commun., 161, 13-18(2013).

    [27] J.Li, J.Lin, Q.Rui, F.Wang, Q.Wang, X.Wang. A novel square planar N42− ring with aromaticity in BeN4. Matter Radiat. Extremes, 7, 038401(2022).

    [28] K.Hu, H.Li, B.Liu, S.Liu, S.Niu, X.Shi, P.Wang, D.Xu, Z.Yao, C.Zhai. Pressure-stabilized polymerization of nitrogen in manganese nitrides at ambient and high pressures. Phys. Chem. Chem. Phys., 24, 5738(2022).

    [29] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C, 123, 10205-10211(2019).

    [30] J.Sun, J.Wu, K.Xia, J.Yuan. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China-Phys. Mech. Astron., 64, 218211(2020).

    [31] P.Gao, K.Hao, S.Liu, W.Lu, J.Lv, M.Zhou. Pressure-stabilized high-energy-density material YN10. J. Phys.: Condens. Matter, 34, 135403(2022).

    [32] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett., 10, 6166-6173(2019).

    [33] G.Frapper, F.Guégan, R.Larhlimi, H.Valencia, B.Wang. Prediction of novel tin nitride SnxNy phases under pressure. J. Phys. Chem. C, 124, 8080-8093(2020).

    [34] X.Chen, X.Liu, M.Miao, W.Yi, L.Zhao, Y.Zheng. Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds. Mater. Des., 193, 108820(2020).

    [35] Y. L.Li, H. Q.Lin, Z.Zeng, J.Zhang. Pressure-induced planar N6 rings in potassium azide. Sci. Rep., 4, 4358(2014).

    [36] H.Gao, C.Liu, J.Sun, H. T.Wang, K.Xia, D.Xing, J.Yuan. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817-824(2018).

    [37] T.Cui, D.Duan, D.Li, F.Li, Z.Liu, F.Tian, Q.Zhuang. Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions. Commun. Chem., 3, 42(2020).

    [38] P.Chen, F.Gao, N.Gong, H.Gou, H.Liu, T.Shen, R.Tian, B.Wan, L.Wu, Y.Yao. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).

    [39] H.Dong, Z.Mu, M.Wen, F.Wu, X.Xie, X.Zhang, X.Zhang. Pressure-induced high-energy-density BeN4 materials with nitrogen chains: First-principles study. J. Phys. Chem. C, 125, 25376-25382(2021).

    [40] H.Gou, Y.Li, B.Liao, J.Sun, S.Sun, B.Wan, L.Wu, J.Xu, P.Zhou. Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains. J. Mater. Sci., 56, 3814-3826(2020).

    [41] Q.Chang, S.Chen, Y.Guo, Z.Liu, H.Sun, Y.Sun, S.Wei, G.Yin, Z.Yu. Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN6 and ScN7 under modest pressure. New J. Phys., 24, 083015(2022).

    [42] X.Li, H.Niu, A. R.Oganov, J.Zhang. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(2017).

    [43] G.Frapper, B.Huang, A. R.Oganov, S.Yu, Q.Zeng, L.Zhang. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).

    [44] G.Frapper, B.Huang. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).

    [45] J.Li, J.Lin, D.Peng, Q.Wang, X.Wang, H.Zhu. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys., 23, 6863-6870(2021).

    [46] H.Li, B.Liu, R.Liu, S.Liu, X.Shi, P.Wang, Z.Yao. Cobalt-nitrogen compounds at high pressure. Inorg. Chem., 60, 14022-14030(2021).

    [47] H.Li, Z.Li, B.Liu, S.Niu, X.Shi, Z.Yao. New cadmium-nitrogen compounds at high pressures. Inorg. Chem., 60, 6772-6781(2021).

    [48] I. I.Oleynik, B. A.Steele. Novel potassium polynitrides at high pressures. J. Phys. Chem. A, 121, 8955-8961(2017).

    [49] K.Bao, T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, F.Tian, W.Wang, S.Wei. A novel polymerization of nitrogen in beryllium tetranitride at high pressure. J. Phys. Chem. C, 121, 9766-9772(2017).

    [50] X.Dong, G.Gao, J.Hou, A. R.Oganov, X.Shao, Y.Tian, H. T.Wang, X. J.Weng, X. F.Zhou. Helium-nitrogen mixtures at high pressure. Phys. Rev. B, 103, L060102(2021).

    [51] T.Cui, D.Duan, D.Li, Y.Liu, Z.Liu, F.Tian. Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Phys. Chem. Chem. Phys., 21, 12029(2019).

    [52] L.Liu, D.Wang, H.Zhang, S.Zhang. Pressure-stabilized GdN6 with an armchair–antiarmchair structure as a high energy density material. J. Mater. Chem. A, 9, 16751-16758(2021).

    [53] H.Cai, K.Chen, Y.Feng, X.Jiang, X.Wang, J.Zeng, Y.Zheng. Prediction of erbium–nitrogen compounds as high-performance high-energy-density materials. J. Phys.: Condens. Matter, 35, 085701(2023).

    [54] S.Chen, Y.Fu, S.Guo, X.Hu, J.Sun, Y.Sun, S.Zhang, J.Zhu. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Appl. Catal., B, 280, 119419(2021).

    [55] S.Lin, J.Qi, K.Xie, S.Zhou. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem., 60, 249-258(2021).

    [56] H.Chen, G.Cui, F.Gong, Q.Liu, X.Sun, T.Wang, L.Xia, X.Xiong, B.Xu, R.Zhao, F.Zhou, Q.Zhou. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng., 7, 2889-2893(2019).

    [57] O.Eriksson, V.Kanchana, Y.Ma, A.Svane, G.Vaitheeswaran, X.Zhang. Lattice dynamics and elastic properties of the 4f electron system: CeN. Phys. Rev. B, 84, 205135(2011).

    [58] M.Bremholm, D.Ceresoli, J.-E.J?rgensen, M. B.Nielsen, V. B.Prakapenka, C.Prescher. Experimental evidence for pressure-induced first order transition in cerium nitride from B1 to B10 structure type. J. Appl. Phys., 121, 025903(2017).

    [59] H.Wang, Q.Wei, H.Yan, M.Zhang. Exploration on pressure-induced phase transition of cerium mononitride from first-principles calculations. Appl. Phys. Lett., 102, 231901(2013).

    [60] J.Lv, Y.Ma, Y.Wang, L.Zhu. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063-2070(2012).

    [61] J. F. l. G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [62] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [63] J.Bai, A. M.Hao. First-principles calculations of electronic and magnetic properties of CeN: The LDA + U method. Chin. Phys. B, 22, 107102(2013).

    [64] Y. X.Wang, G. B.Zhang, Y. G.Zhang. First-principles study of the electronic structure and optical properties of Ce-doped ZnO. J. Appl. Phys., 109, 063510(2011).

    [65] R. A.De Souza, M.Martin, A.Schriever, T.Zacherle. Ab initio analysis of the defect structure of ceria. Phys. Rev. B, 87, 134104(2013).

    [66] C. W. M.Castleton, K.Hermansson, J.Kullgren. Tuning for electron localization and structure at oxygen vacancies in ceria. J. Chem. Phys., 127, 244704(2007).

    [67] D. J. G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [68] A. V.Krukau, J. P.Perdew, A.Savin, G. E.Scuseria. Hybrid functionals with local range separation. J. Chem. Phys., 129, 124103(2008).

    [69] L.Chaput, I.Tanaka, A.Togo. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B, 91, 094306(2015).

    [70] M. J. K. a. C.Dickinson. Evaluation of the simplied calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J. Chem. Phys., 48, 43-50(1968).

    [71] M.Parrinello, A.Rahman. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett., 45, 1196-1199(1980).

    [72] V. L.Deringer, R.Dronskowski, A. L.Tchougreeff. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A, 115, 5461-5466(2011).

    [73] S. J.Clark, P. J.Hasnip, P. J. D.Lindan, M. C.Payne, C. J.Pickard, M. J.Probert, M. D.Segall. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14, 2717-2744(2002).

    [74] H.Liu, Y.Ma, F.Peng, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).

    [75] T.Gao, S.Li, S.Ma, F.Peng, S.Zhu. Novel phase of AlN4 as a possible superhard material. J. Phys. Chem. C, 122, 22660-22666(2018).

    [76] C. J.Pickard, C.Pinilla, Z.Raza, A. M.Saitta. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett., 111, 235501(2013).

    [77] K.Bao, T.Cui, D.Duan, B.Liu, F.Tian, Z.Zhao. Phase diagram, mechanical properties, and electronic structure of Nb-N compounds under pressure. Phys. Chem. Chem. Phys., 17, 22837-22845(2015).

    [78] R.Gao, H.Gou, Q.Hu, Z.Li, Y.Lin, B.Wan, L.Wu, J.Zhang, Y.Zhang, Y.Zhao. Diverse ruthenium nitrides stabilized under pressure: A theoretical prediction. Sci. Rep., 6, 33506(2016).

    [79] X.Du, J.Wang, G.Yang, Q.Yang, Y.Yao. IrN4 and IrN7 as potential high-energy-density materials. J. Chem. Phys., 154, 054706(2021).

    Yuanyuan Wang, Zhihui Li, Shifeng Niu, Wencai Yi, Shuang Liu, Zhen Yao, Bingbing Liu. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401
    Download Citation