• Semiconductor Optoelectronics
  • Vol. 44, Issue 4, 508 (2023)
WANG Haiguo1、2, CHEN Yi1、2, ZHU Lianqing1、2, and WEI Xiangyang1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023032204 Cite this Article
    WANG Haiguo, CHEN Yi, ZHU Lianqing, WEI Xiangyang. Uncooled Micro-infrared Heat Detector Based on Metamaterial Absorber[J]. Semiconductor Optoelectronics, 2023, 44(4): 508 Copy Citation Text show less
    References

    [1] Lin P T, Lin H Y G, Han Z, et al. Label-free glucose sensing using chip-scale mid-infrared integrated photonics[J]. Adv. Optical Materials, 2016, 4(11): 1755-1759.

    [2] Hasan D, Lee C. Hybrid metamatarial absorber enhanced sensing of Co2 gas in the 5~8 μm mid IR spectral window[C]// 2017 19th Inter. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017: 664-667.

    [3] Du K, Li Q, Zhang W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics J., 2015, 7(3): 1-8.

    [4] Bogomolov A, Heβling M, Wenzel U, et al. Development and testing of mid-infrared sensors for in-line process monitoring in biotechnology[J]. Sensors and Actuators B: Chemical, 2015, 221: 1601-1610.

    [5] Li N, Eedugurala N, Azoulay J D, et al. A filterless organic photodetector electrically switchable between visible and infrared detection[J]. Cell Reports Physical Science, 2022, 3(1): 100711.

    [6] Hu P, Li H, You L, et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Opt. Express, 2020, 28(24): 36884-36891.

    [7] Billard M W, Basantani H A, Horn M W, et al. A flexible vanadium oxide thermistor array for localized temperature field measurements in brain[J]. IEEE Sensors J., 2016, 16(8): 2211-2212.

    [8] Aleks M, Jagtap C, Kadam V, et al. An overview of microelectronic infrared pyroelectric detector[J]. Engineered Science, 2021, 16: 82-89.

    [9] Zhou M, Liang R, Zhou Z, et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors[J]. J. of the European Ceramic Society, 2019, 39(6): 2058-2063.

    [10] He H, Lu X, Hanc E, et al. Advances in lead-free pyroelectric materials: a comprehensive review[J]. J. Mater. Chem. C, 2020, 8(5): 1494-1516.

    [11] Talghader J J, Gawarikar A S, Shea R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.

    [12] Syllaios A J, Chahal P. Integrated spectroscopic microbolometer with microfilter arrays: US, US20040211901A1[P]. 2006-2-14.

    [13] Roer A, Lapadatu A, Elfving A, et al. Low cost, high performance far infrared microbolometer[J]. Proc. of SPIE, 2010, 7726: 295-303.

    [14] Cheng Q, Paradis S, Bui T, et al. Design of dual-band uncooled infrared microbolometer[J]. IEEE Sensors J., 2010, 11(1): 167-175.

    [15] Joozdani M Z, Amirhosseini M K. Wideband absorber with combination of plasma and resistive frequency selective surface[J]. IEEE Trans. on Plasma Science, 2016, 44(12): 3254-3261.

    [16] Karvounis A, Grange R. Electro-mechanical to optical conversion by plasmonic-ferroelectric nanostructures[J]. Nanophotonics, 2022, 11(17): 3993-4000.

    [17] Ogawa S, Komoda J, Masuda K, et al. Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber[J]. Optical Engineering, 2013, 52(12): 127104-127104.

    [18] Lin P S, Shen T W, Chan K C, et al. CMOS MEMS thermoelectric infrared sensor with plasmonic metamaterial absorber for selective wavelength absorption and responsivity enhancement[J]. IEEE Sensors J., 2020, 20(19): 11105-11114.

    [19] Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Opt. Letters, 2010, 35(22): 3766-3768.

    [20] Luo Y, Liang Z, Meng D, et al. Ultra-broadband and high absorbance metamaterial absorber in long wavelength infrared based on hybridization of embedded cavity modes[J]. Optics Communications, 2019, 448: 1-9.

    [21] Irzaman, Siskandar R, Nabilah N, et al. Application of lithium tantalate (LiTaO3) films as light sensor to monitor the light status in the Arduino Uno based energy-saving automatic light prototype and passive infrared sensor[J]. Ferroelectrics, 2018, 524(1): 44-55.

    [22] Jiang Z H, Yun S, Toor F, et al. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating[J]. ACS Nano, 2011, 5(6): 4641-4647.

    [23] Soliman E A. Circularly polarized nanoring antenna for uniform overheating applications[J]. Microw. and Opt. Technol. Lett., 2012, 54(9): 2209-2214.

    [24] Grant J, Kenney M, Shah Y D, et al. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications[J]. Opt. Express, 2018, 26(8): 10408-10420.

    [25] Jana J, Ganguly M, Pal T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application[J]. RSC Advances, 2016, 6(89): 86174-86211.

    [26] Talghader J J. Thermal and mechanical phenomena in micromechanical optics[J]. J. of Physics D: Appl. Phys., 2004, 37(10): R109.

    [27] Cheng Q, Paradis S, Bui T, et al. Design of dual-band uncooled infrared microbolometer[J]. IEEE Sensors J., 2010, 11(1): 167-175.

    [28] Jiang S, Li J Z, Li J Y, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Opt. Express, 2022, 30(6): 9065-9087.

    [30] Liu T, Qu C, Almasri M, et al. Design and analysis of frequency-selective surface enabled microbolometers[J]. Proc. of SPIE, 2016, 9819: 487-494.

    WANG Haiguo, CHEN Yi, ZHU Lianqing, WEI Xiangyang. Uncooled Micro-infrared Heat Detector Based on Metamaterial Absorber[J]. Semiconductor Optoelectronics, 2023, 44(4): 508
    Download Citation