• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 027401 (2024)
Jing Yang1 and Wei Du2、3、a)
Author Affiliations
  • 1Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • 2State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
  • 3CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
  • show less
    DOI: 10.1063/5.0148784 Cite this Article
    Jing Yang, Wei Du. High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith[J]. Matter and Radiation at Extremes, 2024, 9(2): 027401 Copy Citation Text show less
    References

    [1] H.Hiesinger, J. W. Head. New views of lunar geoscience: An introduction and overview. Rev. Mineral. Geochem., 60, 1(2006).

    [2] A.Deutsch, F.Langenhorst. Shock metamorphism of minerals. Elements, 8, 31(2012).

    [3] K.Metzler, D.St?ffler, C.Hamann. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci., 53, 5(2018).

    [4] P.Gillet, A. E.Goresy. Shock events in the solar system: The message from minerals in terrestrial planets and asteroids. Annu. Rev. Earth Planet. Sci., 41, 257(2013).

    [5] N.Tomioka, M.Miyahara. High-pressure minerals in shocked meteorites. Meteorit. Planet. Sci., 52, 2017(2017).

    [6] E.Ohtani, K.Sato, M.Kimura, K.Hiraga, M.Miyahara, T.Mikouchi, Y.Ito, T.Arai, S.Ozawa. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proc. Natl. Acad. Sci. U. S. A., 108, 463(2011).

    [7] H.Nishido, T.Sakai, S.Kaneko, E.Ohtani, N.Hirao, M.Miyahara, T.Nagase, M.Kayama. Discovery of seifertite in a shocked lunar meteorite. Nat. Commun., 4, 1737(2013).

    [8] U.B?ttger, M.Klementova, R.Wirth, R. G.Tr?nnes, J.Fritz, A.Greshake, L.Palatinus, L.Ferrière, V. A.Fernandes. Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Am. Mineral., 105, 1704(2020).

    [9] M.Zhang, B. A.Hofmann, C.Zhang, T.Sekine, Y.Lin, L.Xiao, W.Xing, L.Gu, S.Hu. Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169. Geophys. Res. Lett., 47, e2020GL089583(2020).

    [10] N.Tomioka, Y.Li, H.Yurimoto, J.-N.Chen, Q.-T.Jiang, A.-C.Zhang, Y.-J.Guo, N.Sakamoto. Widespread tissintite in strongly shock-lithified lunar regolith breccias. Geophys. Res. Lett., 48, e2020GL091554(2021).

    [11] Y.Liu, C.Floss, L. A.Taylor, A.-C.Zhang, X.-H.Li, W.-B.Hsu, Q.-L.Li. Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results. Meteorit. Planet. Sci., 45, 1929(2010).

    [12] J. A.Barrat, M.Bohn, C.G?pel, M.Chaussidon, P.Gillet, M.Lesourd. Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochim. Cosmochim. Acta, 69, 5597(2005).

    [13] E.Ohtani, S.Kaneko, N.Hirao, K.Sato, T.Arai, M.Miyahara. Discovery of stishovite in Apollo 15299 sample. Am. Mineral., 100, 1308(2015).

    [14] B.Wopenka, T. G.Sharp, A. E.Goresy, M.Chen. A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511(1999).

    [15] S. K.Saxena, L.Dubrovinsky, A. E.Goresy, T. G.Sharp, M.Chen. A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science, 288, 1632(2000).

    [16] L.Dubrovinsky, M.Chen, T. G.Sharp, A.El Goresy. Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: Their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle. J. Phys. Chem. Solids, 65, 1597(2004).

    [17] P.Dera, R. J.Hemley, A.El Goresy, B.Wopenka, N. Z.Boctor, T. G.Sharp, M.Chen, C. T.Prewitt, L.Dubrovinsky. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral., 20, 523(2008).

    [18] Y.Li, L.Gu, S.Hu, A.Yamaguchi, T.Zhang, Y.Lin, X.Tang, H.Changela. Discovery of coesite from the martian shergottite Northwest Africa 8657. Geochim. Cosmochim. Acta, 286, 404(2020).

    [19] M.Miyahara, L.Bindi, N.Tomioka. Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials. Prog. Earth Planet. Sci., 8, 59(2021).

    [20] C.Ma, J. R.Beckett, O.Tschauner. A new high pressure calcium aluminosilicate (CaAl2Si3.5O11) in Martian meteorites: Another after-life for plagioclase and connections to the CAS phase.

    [21] O.Tschauner, J. R.Beckett, C.Ma. A closer look at Martian meteorites: Discovery of the new mineral zagamiite, CaAl2Si3.5O11, a shock-metamorphic, high-pressure, calcium aluminosilicate.

    [22] V. B.Prakapenka, O.Tschauner, J. R.Beckett, G. R.Rossman, H. A.Bechtel, C.Ma, C.Prescher, A.MacDowell. Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteorit. Planet. Sci., 53, 50(2018).

    [23] C.Ma, J. G.Spray, E.Greenberg, V.Prakapenka, O.Tschauner. Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856. Am. Mineral., 106, 650(2021).

    [24] I.Daniel, A.El Goresy, L.Gautron, P.Beck, P.Gillet. A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett., 219, 1(2004).

    [25] A.El Goresy, S.Ozawa, G.Montagnac, P.Gillet, M.Miyahara, P.Beck, E.Ohtani. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars. Geochim. Cosmochim. Acta, 101, 233(2013).

    [26] Y.Liu, R. J.Bodnar, H. Y.McSween, P. S.DeCarli, H.Jay Melosh, L. A.Taylor, I. P.Baziotis. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat. Commun., 4, 1404(2013).

    [27] E. L.Walton, J.Hu, J.Filiberto, T. G.Sharp. Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars. Geochim. Cosmochim. Acta, 140, 334(2014).

    [28] L.Xiao, Y.Guan, I. P.Baziotis, J. B.Balta, W.Hsu, Q.He. Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975. Meteorit. Planet. Sci., 50, 2024(2015).

    [29] J.Hafner, R. J.Hemley, D. M.Teter, G.Kresse. High pressure polymorphism in silica. Phys. Rev. Lett., 80, 2145(1998).

    [30] L. S.Dubrovinsky, R.Ahuja, O.Eriksson, S. K.Saxena, J. M.Wills, B.Johansson, P.Lazor. Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362(1997).

    [31] S. K.Saxena, T.Le Bihan, J.Hu, N. A.Dubrovinskaia, L. S.Dubrovinsky, F.Tutti, S.Rekhi, G.Shen. Pressure-induced transformations of cristobalite. Chem. Phys. Lett., 333, 264(2001).

    [32] S. K.Saxena, T.Le Bihan, L. S.Dubrovinsky, N. A.Dubrovinskaia, S.Rekhi, F.Tutti. Direct transition from cristobalite to post-stishovite α-PbO2-like silica phase. Eur. J. Mineral., 13, 479(2001).

    [33] T.Kubo, K.-i.Funakoshi, T.Kato, Y.Higo. Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci. Adv., 1, e1500075(2015).

    [34] Z.Rong, M.Chen, B.Liu, M.Peng, Y.Wang, J.Wang, J.Xie, K.Di, Y.Zhang, Z.Liu, J.Duan, W.Wan, J.Kong. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens., 13, 590(2021).

    [35] W.Yang, Y.Lin. New lunar samples returned by Chang’e-5: Opportunities for new discoveries and international collaboration. Innovation, 2, 100070(2021).

    [36] D.Xue, H.Zhang, J.Liu, Q.Zhou, H.Hu, B.Liu, C.Li, Z.-Y.Pei, W.Zuo, Q.Wang, X.Ren, Z.Ouyang, X.Deng, W.Wen, Y.Yao, G.Zhang, X.Zeng, Y.Su, C.Xiao, D.Liu, M.-F.Yang. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev., 9, nwab188(2022).

    [37] T.Long, Z.Li, Z.Yang, R.Tartese, Z.Bao, M. D.Norman, C.Wang, C.Crow, G.Benedix, S. G.Webb, K. H.Joy, J. F.Snape, X.Che, F.Jourdan, B.Jolliff, C.Yang, S.Xie, J.Head, D.Liu, A.Nemchin, C. R.Neal, D.Li, M. J.Whitehouse, R.Fan, J.Liu. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science, 374, 887(2021).

    [38] G.-Q.Tang, C.Li, Z.Ouyang, J.-H.Li, S.Guo, F.-Y.Wu, J.Li, J.-Y.Yuan, Z.Xiao, H.-X.Ma, X.-H.Li, Q.-L.Li, Y.Liu, Y.Lin, Q.Zhou, X.Tang. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600, 54(2021).

    [39] W.Li, X.-L.Wang, Z.Yin, S.Boschi, Y.Guan, W.Zhang, H.Hu, H.Hui, J.Chen. Compositional variability of 2.0-Ga lunar basalts at the Chang’e-5 landing site. J. Geophys. Res.: Planets, 128, e2022JE007627(2023).

    [40] K.Miljkovic, C.Crow, A.Nemchin, J. W.Head, X.Che, S.Liu, C. R.Neal, K. H.Joy, T.Long, G.Zhou, M.Whitehouse, X.Yu, C.Wang, D.Liu, Y.Qian, C.Yang, Z.Yang, J. F.Snape, M. D.Norman, S.Xie, R.Tartèse, L.Xiao, N.Zellner. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads. Sci. Adv., 8, eabq2542(2022).

    [41] X.-H.Li, Y.Lin, Q.Zhou, H.-C.Tian, H.Wang, C.Zhang, Z.Xiao, H.Hui, S.-T.Wu, S.Hu, Q.-L.Li, W.Yang, H.-X.Ma, F.-Y.Wu, Y.Chen, D.Zhang. Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta, 335, 183(2022).

    [42] T.He, W.Zhang, X.Wu, J.Li, Y.Li, Z.Wang, Z.She, Z.Hu, H.Becker, Y.Liu, Q.He, L.Xiao, K.Cao, K.Zong. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta, 335, 284(2022).

    [43] R.Pang, S.Liu, W.Du, J.Yang, R.Li, A.Zhang. New occurrence of seifertite and stishovite in Chang’E-5 regolith. Geophys. Res. Lett., 49, e2022GL098722(2022).

    [44] G.Habler, A.?ernok, L. S.Dubrovinsky, E.Bykova, E.Bobocioiu, R.Caracas, H.-P.Liermann, M.Hanfland, M.Mezouar, K.Marquardt. Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation. Nat. Commun., 8, 15647(2017).

    [45] L.Xiao, J. W.Head, L.Wilson, Y.Qian, C. H.van der Bogert, H.Hiesinger. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett., 555, 116702(2021).

    [46] Y.Qian, B.Ye, Y.Yuan, J. W.Head, L.Xiao, C.W?hler, S.Althoff, T.Wilhelm, Q.He, S.Zhao, R.Bugiolacchi. Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett., 48, e2021GL095341(2021).

    [47] Y.Pang, J.Wang, N.Zhang, Y.Kang, H.Hiesinger, X.Lai, Q.Wang, J.Zhao, L.Xiao, Q.He, S.Zhao, R.Yang, Y.Qian, Y.Yuan, C. H.van der Bogert, J.Huang, G.Wang, J. W.Head. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett., 561, 116855(2021).

    [48] C.Zhang, D.-P.Zhang, L.Xu, C.Huang, G.-L.Zhang, H.-C.Tian, S.-H.Yang, F.-Y.Wu, L.-H.Jia, S.-T.Wu, H.Wang, Y.-H.Yang, Q.Zhou, L.-W.Xie, R.Chang, X.-G.Li, H.-L.Lin, W.Yang, D.Zhang, Y.Chen. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 600, 59(2021).

    [49] Y.Lin, W.Yang, X.Li, L.Jia, H.Zhang, H.-C.Tian, D.Zhang, S.Wu, F.Wu. Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase. Am. Mineral., 108, 1669(2023).

    [50] F.Pan, J. M. D.Day, Z.She, I.Baziotis, Y.Qian, L.Xiao, K.Zong, Q.He, L.Wang, X.Wu, B.Luo, Y.Li, W.Zhang, Z.Wang, Z.Hu, C. R.Neal. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus, 383, 115082(2022).

    [51] R.Miyawaki, M.Pasero, S. J.Mills, F.Hatert. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69. Eur. J. Mineral., 34, 463(2022).

    [52] M.Wadhwa, L. A.Haskin, B. L.Jolliff, R. O.Colson. Partitioning in REE-saturating minerals: Theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas. Geochim. Cosmochim. Acta, 57, 4069(1993).

    [53] B. L.Jolliff, M. E.Gunter, J. M.Hughes. The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: The first structure of merrillite from the Moon. Am. Mineral., 91, 1547(2006).

    [54] J. M.Hughes, B. L.Jolliff, J. J.Freeman, R. A.Zeigler. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am. Mineral., 91, 1583(2006).

    [55] G. H.Howarth, Y.Chen, J. F.Pernet-Fisher, Y.Liu, L. A.Taylor. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility. Geochim. Cosmochim. Acta, 144, 326(2014).

    [56] J. F.Pernet-Fisher, L. M.Kriegsman, A. M.álvarez-Valero. Petrologic history of lunar phosphates accounts for the water content of the Moon’s mare basalts. Geosciences, 9, 421(2019).

    [57] A. A.Griffiths, W.van Westrenen, T. J.Barrett, N. J.Potts, R.Tartèse, I. A.Franchi, M.Anand. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation. Meteorit. Planet. Sci., 51, 1555(2016).

    [58] J.Yang, D.Ju, W.Du, J.Liu, R.Li, R.Pang. Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith. Geochim. Cosmochim. Acta, 340, 189(2023).

    [59] G. J.Taylor, C. R.Neal, R.Neal C., J.Taylor G., L. A.Taylor, P. H.Warren. Lunar granite petrogenesis and the process of silicate liquid immiscibility: The barium problem. Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, 89(1989).

    [60] L. A.Taylor, C. R.Neal. The nature of barium partitioning between immiscible melts: A comparison of experimental and natural systems with reference to lunar granite petrogenesis, 209(1989).

    [61] C. K.Shearer, M. N.Spilde, J. J.Papike. Trace-element partitioning between immiscible lunar melts: An example from naturally occurring lunar melt inclusions. Am. Mineral., 86, 238(2001).

    [62] B.Charlier, B.Charlier, I. V.Veksler, B.Charlier, O.Namur, R.Latypov, C.Tegner and, O.Namur, B.Charlier, O.Namur, R.Latypov, C.Tegner and, R.Latypov, B.Charlier, O.Namur, R.Latypov, C.Tegner and, C.Tegner. Layered Intrusions, 229(2015).

    [63] M. R.Reid, D. S.Draper, A. L.Gullikson, J. J.Hagerty, J. F.Rapp. Silicic lunar volcanism: Testing the crustal melting model. Am. Mineral., 101, 2312(2016).

    [64] P. C.Hess, M. J.Rutherford, G. H.Daniel. Experimental liquid line of descent and liquid immiscibility for basalt 70017, 1, 569(1974).

    [65] F. J.Ryerson, H. A.Tuchfeld, R. N.Guillemette, M. J.Rutherford, P. C.Hess. Residual products of fractional crystallization of lunar magmas: An experimental study, 895(1975).

    [66] T. L.Grove, B.Charlier. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol., 164, 27(2012).

    [67] H. J.Melosh. Impact Cratering: A Geologic Process(1989).

    [68] B.Jolliff, M.Zanetti, J.Plescia, C. H.van der Bogert, A.Stadermann, H.Hiesinger. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon. Icarus, 298, 64(2017).

    [69] B. T.Greenhagen, T. D.Glotch, J. L.Bandfield, P. G.Lucey, R. C.Elphic, M. B.Wyatt, C. C.Allen, N.Bowles, K. D.Hanna, I. R.Thomas, D. A.Paige. Highly silicic compositions on the Moon. Science, 329, 1510(2010).

    [70] E.Coman, B. L.Jolliff, S. J.Lawrence, J. D.Stopar, T. A.Giguere, M. J.Watkins, R. N.Clegg-Watkins. Nonmare volcanism on the Moon: Photometric evidence for the presence of evolved silicic materials. Icarus, 285, 169(2017).

    [71] N.Kumari, R. N.Watkins, E. R.Jawin, D. P.Moriarty, B. T.Greenhagen, P. G.Lucey, D. J.Lawrence, T. D.Glotch, J. T.Cahill, S.Liet?al.. The scientific value of a sustained exploration program at the Aristarchus plateau. Planet. Sci. J., 2, 136(2021).

    [72] T. G.Sharp, J.Hu. Formation, preservation and extinction of high-pressure minerals in meteorites: Temperature effects in shock metamorphism and shock classification. Prog. Earth Planet. Sci., 9, 6(2022).

    [73] C.Ma, L.Bindi, O.Tschauner, and L.Bindi, G.Cruciani. Discovering high-pressure and high-temperature minerals. Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, 169(2023).

    Jing Yang, Wei Du. High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith[J]. Matter and Radiation at Extremes, 2024, 9(2): 027401
    Download Citation