[1] C. Grebogi, E. Ott, J. A. Yorke. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238, 632-638(1987).
[2] G. Adiletta, A. R. Guido, C. Rossi. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn., 10, 251-269(1996).
[3] R. Gilmore. Topological analysis of chaotic dynamical systems. Rev. Mod. Phys., 70, 1455-1529(1998).
[4] D. Gella, I. Zuriguel, J. Ortín. Multifractal intermittency in granular flow through bottlenecks. Phys. Rev. Lett., 123, 218004(2019).
[5] T. P. J. Krüger, C. Ilioaia, L. Valkunas, R. V. Grondelle. Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J. Phys. Chem. B, 115, 5083-5095(2011).
[6] A. C. L. Chian, E. L. Rempel, C. Rogers. Complex economic dynamics: chaotic saddle, crisis and intermittency. Chaos Solitons Fractals, 29, 1194-1218(2006).
[7] S. H. Gong, C. M. Kim. On–off intermittency in the threshold of a continuous-wave Nd:YAG laser. J. Opt. Soc. Am. B, 18, 1285-1287(2001).
[8] G. S. Yim, Y. J. Park, C. M. Kim, Y. S. Kim. Transition from laser-off to laser-on through on–off intermittency in a gain-modulated CO2 laser. J. Opt. Soc. Am. B, 21, 2112-2116(2004).
[9] J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi. Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett., 104, 157403(2010).
[10] S. Osborne, A. Amann, D. Bitauld, S. O’Brien. On-off intermittency in an optically injected semiconductor laser. Phys. Rev. E, 85, 056204(2012).
[11] J. P. Toomey, D. M. Kane, M. W. Lee, K. A. Shore. Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express, 18, 16955-16972(2010).
[12] A. Locquet. Routes to chaos of a semiconductor laser subjected to external optical feedback: a review. Photonics, 7, 22(2020).
[13] N. Jiang, C. Xue, D. Liu, Y. Lv, K. Qiu. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt. Lett., 42, 1055-1058(2017).
[14] M. S. Islam, A. V. Kovalev, G. Coget, E. A. Viktorov, D. S. Citrin, A. Locquet. Staircase dynamics of a photonic microwave oscillator based on a laser diode with delayed optoelectronic feedback. Phys. Rev. Appl., 13, 064038(2020).
[15] N. Li, W. Pan, A. Locquet, V. N. Chizhevsky, D. S. Citrin. Statistical Properties of an external-cavity semiconductor laser: experiment and theory. IEEE J. Sel. Top. Quantum Electron., 21, 553-560(2015).
[16] Y. Hong, P. S. Spencer, K. A. Shore. Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection. IEEE J. Quantum Electron., 50, 236-242(2014).
[17] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).
[18] J. Mork, B. Tromborg, P. L. Christiansen. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron., 24, 123-133(1988).
[19] T. Sano. Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback. Phys. Rev. A, 50, 2719-2726(1994).
[20] A. K. D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, M. Inubushi. Dynamics versus feedback delay time in photonic integrated circuits: mapping the short cavity regime. IEEE Photon. J., 9, 6600512(2017).
[21] A. K. D. Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, K. Yoshimura. Photonic integrated circuits unveil crisis-induced intermittency. Opt. Express, 24, 22198-22209(2016).
[22] A. K. D. Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, M. Inubushi. Random number generation from intermittent optical chaos. IEEE J. Sel. Top. Quantum Electron., 23, 1801208(2017).
[23] A. Locquet, B. Kim, D. Choi, N. Li, D. S. Citrin. Initial-state dependence of the route to chaos of an external-cavity laser. Phys. Rev. A, 95, 023801(2017).
[24] D. Choi, M. J. Wishon, C. Y. Chang, D. S. Citrin, A. Locquet. Multistate intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity. Chaos, 28, 011102(2018).
[25] J. X. Dong, J. P. Zhuang, S. C. Chan. Tunable switching between stable and periodic states in a semiconductor laser with feedback. Opt. Lett., 42, 4291-4294(2017).
[26] T. Zhang, Z. Jia, A. Wang, Y. Hong, L. Wang, Y. Guo, Y. Wang. Experimental observation of dynamic-state switching in VCSELs with optical feedback. IEEE Photon. Technol. Lett., 33, 335-338(2021).
[27] S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, E. P. O’Reilly. Design of single-mode and two-color Fabry--Pérot lasers with patterned refractive index. IEEE J. Sel. Top. Quantum Electron., 13, 1157-1163(2007).
[28] C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, J. O’Gorman. Discrete mode lasers for communication applications. IET Optoelectron., 3, 1-17(2009).
[29] S. O’Brien, S. Osborne, D. Bitauld, N. Brandonisio, A. Amann, R. Phelan, B. Kelly, J. O’Gorman. Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers. IEEE Trans. Microw. Theory Tech., 58, 3083-3087(2010).
[30] D. Chang, Z. Q. Zhong, J. M. Tang, P. Spencer, Y. H. Hong. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express, 28, 39076-39083(2020).
[31] Z. Q. Zhong, Z. M. Wu, G. Q. Xia. Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback. Photon. Res., 5, 6-10(2017).
[32] T. Heil, I. Fischer, W. Elsäßer. Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback. Phys. Rev., 58, R2672-R2675(1998).
[33] R. Lang, K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 16, 347-355(1980).
[34] X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, Y. Hao. Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays. IEEE J. Quantum Electron., 54, 2000308(2018).
[35] L. Mashal, G. V. Sande, L. Gelens, J. Danckaert, G. Verschaffelt. Square-wave oscillations in semiconductor ring lasers with delayed optical feedback. Opt. Express, 20, 22503-22516(2012).
[36] A. M. Kaplan, G. P. Agrawal, D. N. Maywar. Optical square-wave clock generation based on an all-optical flip-flop. IEEE Photon. Technol. Lett., 22, 489-491(2010).