• Chinese Optics Letters
  • Vol. 22, Issue 4, 041201 (2024)
Yanru Zhou1、2、*, Lifan Fan1、3, Kai Xu1、3, Wenyao Liu1、3, Enbo Xing1、3, Jun Tang1、3, and Jun Liu1、3、**
Author Affiliations
  • 1State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
  • 2School of Information & Communication Engineering, North University of China, Taiyuan 030051, China
  • 3School of Instrument & Electronics, North University of China, Taiyuan 030051, China
  • show less
    DOI: 10.3788/COL202422.041201 Cite this Article Set citation alerts
    Yanru Zhou, Lifan Fan, Kai Xu, Wenyao Liu, Enbo Xing, Jun Tang, Jun Liu. Dynamic range expansion for optical frequency shift detection based on multiple harmonics[J]. Chinese Optics Letters, 2024, 22(4): 041201 Copy Citation Text show less
    References

    [1] M. Luo, Q. Yang, F. Dong et al. Miniature micro-ring resonator sensor with electro-optic polymer cladding for wide-band electric field measurement. J. Light. Technol., 40, 2577(2022).

    [2] D. N. Roxby, Z. Yuan, S. Krishnamoorthy et al. Enhanced biophotocurrent generation in living photosynthetic optical resonator. Adv. Sci., 7, 1903707(2020).

    [3] R. Gao, D. F. Lu, J. Cheng et al. Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide. Appl. Phys. Lett., 110, 131903(2017).

    [4] S. Pu, L. Mao, T. Yao et al. Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEEE Sens. J., 17, 5857(2017).

    [5] Y. Zhang, Z. Wang, G. Wang et al. Polarization stability of spun fiber resonator for resonant fiber optic gyro. IEEE Sens. J., 23, 15644(2023).

    [6] L. Feng, X. Ren, X. Deng et al. Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure. Opt. Express, 20, 18202(2012).

    [7] Z. Wang, G. Wang, S. Kumar et al. Recent advancements in resonant fiber optic gyro—a review. IEEE Sens. J., 22, 18240(2022).

    [8] S. Bramhavar, D. Kharas, P. W. Juodawlkis. A photonic integrated resonant accelerometer. IEEE Photonics Conference (IPC), 1(2016).

    [9] Y. Huang, J. G. Flor Flores, Y. Li et al. A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits. Laser Photonics Rev., 14, 1800329(2020).

    [10] A. A. Savchenkov, W. Liang, V. S. Ilchenko et al. Photonic E-field sensor. AIP Adv., 4, 122901(2014).

    [11] S. Forstner, S. Prams, J. Knittel et al. Cavity optomechanical magnetometer. Phys. Rev. Lett., 108, 120801(2012).

    [12] S. Forstner, E. Sheridan, J. Knittel et al. Ultrasensitive optomechanical magnetometry. Adv. Mater., 26, 6348(2014).

    [13] B.-B. Li, G. Brawley, H. Greenall et al. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photonics Res., 8, 1064(2020).

    [14] J. Rong, W. Xu, E. Xing et al. A high-sensitivity magnetic field sensor based on PDMS flexible resonator. Appl. Sci., 13, 6274(2023).

    [15] P. Zhou, K. Liang, Y. Wang et al. Research on A high-sensitivity temperature sensor with multi-indicator based on nano-cylinder-loaded ring resonator. Photonics, 10, 69(2023).

    [16] Q. Wang, X. Feng, Y. Zhao et al. Fiber ring resonator based slow-light and high sensitivity gas sensing technology. Sens. Actuators B, 214, 197(2015).

    [17] H. Li, J. Xu, X. Wang et al. High-bandwidth tracking method of resonant frequency for sensing resonators. J. Light. Technol., 38, 898(2020).

    [18] C. Saavedra, D. Pandey, W. Alt et al. Spectroscopic gas sensor based on a fiber Fabry-Perot cavity. Phys. Rev. Appl., 18, 044039(2022).

    [19] O. Arcizet, P. F. Cohadon, T. Briant et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett., 97, 133601(2006).

    [20] Y. G. Zhang, H. Li, N. Liu et al. Design of real-time free spectral range measurement based on HOPLL technique. IEEE Sens. J., 20, 10607(2020).

    [21] Q. Liu, Z. He, T. Tokunaga. Sensing the earth crustal deformation with nano-strain resolution fiber-optic sensors. Opt. Express, 23, A428(2015).

    [22] J. Chen, Q. Liu, X. Fan et al. Ultrahigh resolution optical fiber strain sensor using dual Pound–Drever–Hall feedback loops. Opt. Lett., 41, 1066(2016).

    [23] D. A. Long, B. J. Reschovsky, F. Zhou et al. Electro-optic frequency combs for rapid interrogation in cavity optomechanics. Opt. Lett., 46, 645(2021).

    [24] B. J. Reschovsky, D. A. Long, F. Zhou et al. Intrinsically accurate sensing with an optomechanical accelerometer. Opt. Express, 30, 19510(2022).

    [25] D. A. Long, B. J. Reschovsky, T. W. LeBrun et al. High dynamic range electro-optic dual-comb interrogation of optomechanical sensors. Opt. Lett., 47, 4323(2022).

    [26] U. A. Javid, S. D. Rogers, A. Graf et al. Cavity optomechanical sensing in the nonlinear saturation limit. Laser Photonics Rev., 10, 1002(2021).

    [27] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391(2014).

    Yanru Zhou, Lifan Fan, Kai Xu, Wenyao Liu, Enbo Xing, Jun Tang, Jun Liu. Dynamic range expansion for optical frequency shift detection based on multiple harmonics[J]. Chinese Optics Letters, 2024, 22(4): 041201
    Download Citation