• Semiconductor Optoelectronics
  • Vol. 44, Issue 4, 586 (2023)
WANG Haoran1, LI Yuan2、*, MA Zejun2, ZHU Shenbo2, LI Guanhua2, LIU Yu2, YU Jinling2, and CHEN Yonghai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023030902 Cite this Article
    WANG Haoran, LI Yuan, MA Zejun, ZHU Shenbo, LI Guanhua, LIU Yu, YU Jinling, CHEN Yonghai. Theoretical Study of Inter-band Cascade Structure Based on Finite Difference[J]. Semiconductor Optoelectronics, 2023, 44(4): 586 Copy Citation Text show less
    References

    [1] Kazarinov R F. Possible amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Sov. Phys. Semicond., 1971, 5(4): 707-709.

    [2] Faist J, Capasso F, Sivco D L, et al. Prevention of lipopo-lysaccharide-induced lethal toxicity by tyrosine kinase inhibitors[J]. Science, 1994, 264(5158): 553-556.

    [3] Schwaighofer A, Brandstetter M, Lendl B. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46(19): 5903-5924.

    [4] Pecharromn-Gallego R. An Overview on Quantum Cascade Lasers: Origins and Development[M]. Intech Open, 2017.

    [5] Zhang L, Tian G, Li J, et al. Laser-induced plasma spectroscopy of hydrogen Balmer series in laboratory air[J]. Appl. Spectroscopy, 2014, 68(10): 1095-1107.

    [6] Yao Y, Hoffman A J, Gmachl C F. Erratum: Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures[J]. Nature Photonics, 2012, 6(7): 432-439.

    [7] Kumar S. Photonic adddrop filter based on integrated photonic crystal structure[J]. IEEE J. of Sel. Topics in Quantum Electronics, 2010, 17(1): 38-47.

    [8] Faist J, Beck M, Aellen T, et al. Quantum-cascade lasers based on a bound-to-continuum transition[J]. Appl. Phys. Lett., 2001, 78(2): 147-149.

    [9] Wang Q J, Pflügl C, Diehl L. Quantum cascade lasers with integrated plasmonic antenna-array collimators[J]. Opt. Express, 2009, 94(1): 011103.

    [10] Faist J, Capasso F, Sirtori C, et al. High-power long-wavelength (/spl lambda//spl sim/11.5 μm) quantum cascade lasers operating above room temperature[J]. IEEE Photon. Technol. Lett., 1996, 10(8): 1100-1102.

    [11] Lyakh A, Maulini R, Tsekoun, et al. High-performance continuous-wave room temperature 4.0 μm quantum cascade lasers with single-facet optical emission exceeding 2 W[J]. National Academy of Sciences, 2010, 107(44): 18799-18802.

    [12] Sirtori C, Capasso F, Faist J, et al. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells[J]. Phys. Rev. B, 1994, 50(12): 8663-8674.

    [13] Zhu Y Y, Ming N B. Electro-optic effect and transmission spectrum in a Fibonacci optical superlattice[J]. J. of Physics: Condensed Matter, 1992, 4(40): 8073-8082.

    [14] Foreman B A. Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures[J]. Phys. Rev. B Condens Matter, 1993, 48(7): 4964-4967.

    [15] Kolokolov I, Li J, Ning Z. K·p Hamiltonian without spurious-state solutions[J]. Phys. Rev. B, 2003, 68(16): 161308.

    [16] Ziberi B, Frost F, Hche T, et al. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory[J]. Phys. Rev. B, 2005, 72(23): 235010.

    [17] Huang Q, Yu D L, Zhao Z S, et al. First-principles study of O-BN: A sp3-bonding boron nitride allotrope[J]. J. Appl. Phys., 2012, 112: 053518.

    [18] Jiang Y, Xu Y, Song G F. Stable finite element method of eight-band k·p model without spurious solutions and numerical study of interfaces in heterostructures[J]. J. Appl. Phys., 2014, 116: 235702.

    [19] Liu G B, Chuang S L. Modeling of Sb-based type-Ⅱ quantum cascade lasers[J]. Phys. Rev. B, 2002, 65: 165220.

    WANG Haoran, LI Yuan, MA Zejun, ZHU Shenbo, LI Guanhua, LIU Yu, YU Jinling, CHEN Yonghai. Theoretical Study of Inter-band Cascade Structure Based on Finite Difference[J]. Semiconductor Optoelectronics, 2023, 44(4): 586
    Download Citation