• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 1110 (2023)
Xiaowei WU1, Han ZHANG1、2, Biao ZENG1、2, Chen MING1、2, and Yiyang SUN1、2、*
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20220756 Cite this Article
    Xiaowei WU, Han ZHANG, Biao ZENG, Chen MING, Yiyang SUN. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3[J]. Journal of Inorganic Materials, 2023, 38(9): 1110 Copy Citation Text show less
    References

    [1] M M LEE, J TEUSCHER, T MIYASAKA et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 643(2012).

    [2] J BURSCHKA, N PELLET, S J MOON et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316(2013).

    [3] M A GREEN, A HO-BAILLIE, H J SNAITH. The emergence of perovskite solar cells. Nature Photonics, 8, 506(2014).

    [4] N J JEON, J H NOH, W S YANG et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476(2015).

    [5] M SALIBA, T MATSUI, K DOMANSKI et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354, 206(2016).

    [6] D P MCMEEKIN, G SADOUGHI, W REHMAN et al. A mixed- cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351, 151(2016).

    [7] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 6050(2009).

    [8] M LIU, M B JOHNSTON, H J SNAITH. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395(2013).

    [9] . Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html

    [10] B A BELIKOVICH, I P PASHCHUK, N S PIDZYRAILO. Luminescence of CsPbCl3 single-crystals. Optikai I Spectroskopiya, 113(1977).

    [11] M ERA, S MORIMOTO, T TSUTSUI et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Applied Physics Letters, 65, 676(1994).

    [12] Z K TAN, R S MOGHADDAM, M L LAI et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 9, 687(2014).

    [13] K LIN, J XING, L N QUAN et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 562, 245(2018).

    [14] Y CAO, N WANG, H TIAN et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562, 249(2018).

    [15] S D STRANKS, H J SNAITH. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 10, 391(2015).

    [16] Y FANG, Q DONG, Y SHAO et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 9, 679(2015).

    [17] L DOU, Y M YANG, J YOU et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5404(2014).

    [18] W J YIN, T SHI, Y YAN. Unusual defect physics in CH3NH3Pb3 perovskite solar cell absorber. Applied Physics Letters, 104, 063903(2014).

    [19] W YIN, T SHI, Y YAN. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 26, 4653(2014).

    [20] R E BRANDT, V STEVANOVIĆ, D S GINLEY et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 5, 265(2015).

    [21] D MEGGIOLARO, S G MOTTI, E MOSCONI et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 11, 702(2018).

    [22] R C KURCHIN, P GORAI, T BUONASSISI et al. Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chemistry of Materials, 30, 5583(2018).

    [23] J S PARK, S KIM, Z XIE et al. Point defect engineering in thin-film solar cells. Nature Reviews Materials, 3, 194(2018).

    [24] J KANG, L WANG. High defect tolerance in lead halide perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 489(2017).

    [25] C MING, H WANG, D WEST et al. Defect tolerance in CsPbI3: reconstruction of potential energy landscape and band degeneracy in spin-orbit coupling. Journal of Materials Chemistry A, 10, 3018(2022).

    [26] M L AGIORGOUSIS, Y Y SUN, H ZENG et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. Journal of the American Chemical Society, 136, 14570(2014).

    [27] X W WU, C MING, J SHI et al. Defects in statically unstable solids: the case for cubic perovskite α-CsPbI3. Chinese Physics Letters, 39, 046101(2022).

    [28] A J NEUKIRCH, W NIE, J C BLANCON et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Letters, 16, 3809(2016).

    [29] Y GAO, T LUO, Y XIA et al. The joint effect of spin-orbit coupling and atomistic disorder on bandgap evolution in inorganic CsSn1-xPbxI3 mixed perovskite. Journal of Applied Physics, 131, 055107(2022).

    [30] E MOSCONI, B MERABET, D MEGGIOLARO et al. First-principles modeling of bismuth doping in the MAPbI3 perovskite. Journal of Physical Chemistry C, 122, 14107(2018).

    [31] T BISCHOFF, J WIKTOR, W CHEN et al. Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites. Physical Review Materials, 3, 123802(2019).

    [32] S TAO, I SCHMIDT, G BROCKS et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications, 2560(2019).

    [33] A MAHATA, D MEGGIOLARO, F DE ANGELIS. From large to small polarons in lead, tin, and mixed lead-tin halide perovskites. Journal of Physical Chemistry Letters, 10, 1790(2019).

    [34] J WANG, J ZHANG, Y ZHOU et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a lewis base. Nature Communications, 177(2020).

    [35] C LIU, C IGCI, Y YANG et al. Dopant-free hole transport materials afford efficient and stable inorganic perovskite solar cells and modules. Angewandte Chemie International Edition, 60, 20489(2021).

    [36] W KAISER, M CARIGNANO, A A ALOTHMAN et al. First-principles molecular dynamics in metal-halide perovskites: contrasting generalized gradient approximation and hybrid functionals. Journal of Physical Chemistry Letters, 12, 11886(2021).

    [37] C VONA, D NABOK, C DRAXL. Electronic structure of (organic-)inorganic metal halide perovskites: the dilemma of choosing the right functional. Advanced Theory and Simulations, 5, 2100496(2022).

    [38] D MEGGIOLARO, F DE ANGELIS. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Letters, 3, 2206(2018).

    [39] G E EPERON, G M PATERNÒ, R J SUTTON et al. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 3, 19688(2015).

    [40] A SWARNKAR, A R MARSHALL, E M SANEHIRA et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92(2016).

    [41] S M YOON, H MIN, J B KIM et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 183(2021).

    [42] P WANG, X ZHANG, Y ZHOU et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 9:, 2225(2018).

    [43] Y WANG, M I DAR, L K ONO et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science, 365, 591(2019).

    [44] B ZHAO, S F JIN, S HUANG et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. Journal of the American Chemical Society, 140, 11716(2018).

    [45] K WANG, Z JIN, L LIANG et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 175(2019).

    [46] Z LI, M YANG, J S PARK et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28, 284(2016).

    [47] Y WANG, Y CHEN, T ZHANG et al. Chemically stable black phase CsPbI3 inorganic perovskites for high-efficiency photovoltaics. Advanced Materials, 32, 2001025(2020).

    [48] W XIANG, S LIU, W TRESS et al. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy & Environmental Science, 14, 2090(2021).

    [49] Y CUI, J SHI, F MENG et al. A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2 V. Advanced Materials, 34, 2205028(2022).

    [50] G KRESSE, J FURTHMÜLLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 15(1996).

    [51] P. E. BLÖCHL. Projector augmented-wave method. Physical Review B, 50, 17953(1994).

    [52] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1758(1999).

    [53] X W WU, W GAO, J CHAI et al. Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Science China Materials, 64, 2976(2021).

    [54] X ZHANG, M E TURIANSKY, J X SHEN et al. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Physical Review B, 101, 140101(2020).

    [55] J BANG, Y Y SUN, T A ABTEW et al. Difficulty in predicting shallow defects with hybrid functionals: implication of the long-range exchange interaction. Physical Review B, 88, 035134(2013).

    Xiaowei WU, Han ZHANG, Biao ZENG, Chen MING, Yiyang SUN. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3[J]. Journal of Inorganic Materials, 2023, 38(9): 1110
    Download Citation