• Journal of Inorganic Materials
  • Vol. 37, Issue 7, 802 (2022)
Dongliang SU, Jin CUI, Pengbo ZHAI, and Xiangxin GUO*
Author Affiliations
  • College of Physics, Qingdao University, Qingdao 266071, China
  • show less
    DOI: 10.15541/jim20220196 Cite this Article
    Dongliang SU, Jin CUI, Pengbo ZHAI, Xiangxin GUO. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802 Copy Citation Text show less
    References

    [1] K LI, X HU, Z ZHANG et al. Three-dimensional porous biogenic Si/C composite for high performance lithium-ion battery anode derived from equisetum fluviatile. Journal of Inorganic Materials, 929-935(2021).

    [2] R B CERVERA, N SUZUKI, T OHNISHI et al. High performance silicon-based anodes in solid-state lithium batteries. Energy & Environmental Science, 662-666(2014).

    [3] M Y FENG, J H TIAN, Y Y LIU et al. Effect of silicon anode additives on lithium ion batteries. Journal of Inorganic Materials, 647-652(2015).

    [4] F OZANAM, M ROSSO. Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 2-11(2016).

    [5] J SUNG, N KIM, J MA et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 1164-1175(2021).

    [6] X HUANG, X SUI, H YANG et al. HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2593-2599(2018).

    [7] Y LIU, H BAI, Q ZHAO et al. Storage aging mechanism of LiNi0.8Co0.15Al0.05O2/graphite Li-ion batteries at high state of charge. Journal of Inorganic Materials, 175-180(2021).

    [8] X L MENG, H Y HUO, X X GUO et al. Influence of film thickness on the electrochemical performance of α-SiOx thin-film anodes. Journal of Inorganic Materials, 1141-1146(2018).

    [9] N OHTA, S KIMURA, J SAKABE et al. Anode properties of Si nanoparticles in all-solid-state Li batteries. ACS Applied Energy Materials, 7005-7008(2019).

    [10] J HA, U PAIK. Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery. Journal of Power Sources, 463-468(2013).

    [11] H KIM, M SEO, M H PARK et al. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angewandte Chemie International Edition, 2146-2149(2010).

    [12] C K CHAN, H PENG, G LIU et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 31-35(2008).

    [13] Z WEN, G LU, S MAO et al. Silicon nanotube anode for lithium-ion batteries. Electrochemistry Communications, 67-70(2013).

    [14] H ZHANG, P ZONG, M CHEN et al. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries. ACS Nano, 3054-3062(2019).

    [15] G X WANG, J H AHN, J YAO et al. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications, 689-692(2004).

    [16] T SHEN, X H XIA, D XIE et al. Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate- structured microspheres as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 11197-11203(2017).

    [17] F M DU, N ZHAO, Y Q LI et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. Journal of Power Sources, 24-28(2015).

    [18] C Z ZHAO, P Y CHEN, R ZHANG et al. An ion redistributor for dendrite-free lithium metal anodes. Science Advances(2018).

    [19] H HUO, X LI, Y CHEN et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Materials, 361-366(2020).

    [20] CAO LIANG T, H J, W H LIANG et al. Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance. RSC Advances, 41151-41160(2019).

    [21] X ZHOU, Y X YIN, L J WAN et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Advanced Energy Materials, 1086-1090(2012).

    [22] Y YAO, M T MCDOWELL, I RYU et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2949-2954(2011).

    [23] A DHANABALAN, B F SONG, S L BISWAL et al. Extreme rate capability cycling of porous silicon composite anodes for lithium- ion batteries. ChemElectroChem, 3318-3325(2021).

    [24] X ZHANG, S WENG, G YANG et al. Interplay between solid-electrolyte interphase and (in) active LixSi in silicon anode. Cell Reports Physical Science(2021).

    [25] J Y LIU, X W GAO, G O HARTLEY et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte. Joule, 101-108(2020).

    [26] T JAUMANN, J BALACH, M KLOSE et al. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders. Physical Chemistry Chemical Physics, 24956-24967(2015).

    [27] JIN, B LI Y, K WANG et al. Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes. Chemical Engineering Journal(2022).

    [28] L LÜ, Y WANG, W HUANG et al. The effect of cathode type on the electrochemical performance of Si-based full cells. Journal of Power Sources(2022).

    Dongliang SU, Jin CUI, Pengbo ZHAI, Xiangxin GUO. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802
    Download Citation