• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907004 (2024)
Bin Yang, Shuhua Yue, and Pu Wang*
Author Affiliations
  • Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
  • show less
    DOI: 10.3788/CJL240447 Cite this Article Set citation alerts
    Bin Yang, Shuhua Yue, Pu Wang. Optical Microscopy Imaging Contributes to Precision Oncology[J]. Chinese Journal of Lasers, 2024, 51(9): 0907004 Copy Citation Text show less
    References

    [1] Lai Y H, Lin S Y, Wu Y S et al. AC-93253 iodide, a novel Src inhibitor, suppresses NSCLC progression by modulating multiple Src-related signaling pathways[J]. Journal of Hematology & Oncology, 10, 172(2017).

    [2] Lai Y X, Wei X R, Lin S H et al. Current status and perspectives of patient-derived xenograft models in cancer research[J]. Journal of Hematology & Oncology, 10, 106(2017).

    [3] Meng S J, Zhou H C, Feng Z Y et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J]. Molecular Cancer, 16, 94(2017).

    [4] Li A C, Zhang T B, Zheng M et al. Exosomal proteins as potential markers of tumor diagnosis[J]. Journal of Hematology & Oncology, 10, 175(2017).

    [5] Viardot A, Bargou R. Bispecific antibodies in haematological malignancies[J]. Cancer Treatment Reviews, 65, 87-95(2018).

    [6] Yu S N, Liu Q, Han X W et al. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment[J]. Experimental Hematology & Oncology, 6, 31(2017).

    [7] Yu S N, Li A P, Liu Q et al. Recent advances of bispecific antibodies in solid tumors[J]. Journal of Hematology & Oncology, 10, 155(2017).

    [8] Yi M, Jiao D C, Xu H X et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors[J]. Molecular Cancer, 17, 129(2018).

    [9] Wei G Q, Ding L J, Wang J S et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia[J]. Experimental Hematology & Oncology, 6, 10(2017).

    [10] Xu H X, Yu S N, Liu Q et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer[J]. Journal of Hematology & Oncology, 10, 97(2017).

    [11] Pang Y Y, Hou X Y, Yang C S et al. Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy[J]. Molecular Cancer, 17, 91(2018).

    [12] Liu B S, Song Y P, Liu D L. Recent development in clinical applications of PD-1 and PD-L1 antibodies for cancer immunotherapy[J]. Journal of Hematology & Oncology, 10, 174(2017).

    [13] Sicklick J K, Kato S, Okamura R et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study[J]. Nature Medicine, 25, 744-750(2019).

    [14] Rodon J, Soria J C, Berger R et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial[J]. Nature Medicine, 25, 751-758(2019).

    [15] Le Tourneau C, Borcoman E, Kamal M. Molecular profiling in precision medicine oncology[J]. Nature Medicine, 25, 711-712(2019).

    [16] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome[J]. Nature, 431, 931-945(2004).

    [17] Margulies M, Egholm M, Altman W E et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 437, 376-380(2005).

    [18] Shendure J, Porreca G J, Reppas N B et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J]. Science, 309, 1728-1732(2005).

    [19] Roberts K G, Morin R D, Zhang J H et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia[J]. Cancer Cell, 22, 153-166(2012).

    [20] Stacey S N, Sulem P, Jonasdottir A et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility[J]. Nature Genetics, 43, 1098-1103(2011).

    [21] Bass A J, Lawrence M S, Brace L E et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion[J]. Nature Genetics, 43, 964-968(2011).

    [22] Fujimoto A, Totoki Y, Abe T et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators[J]. Nature Genetics, 44, 760-764(2012).

    [23] Berger M F, Hodis E, Heffernan T P et al. Melanoma genome sequencing reveals frequent PREX2 mutations[J]. Nature, 485, 502-506(2012).

    [24] Cheung N K, Zhang J, Lu C et al. St. Jude Children’s Research Hospital‒Washington University Pediatric Cancer Genome Project. Association of age at diagnosis and genetic mutations in patients with neuroblastoma[J]. JAMA, 307, 1062-1071(2012).

    [25] Rafnar T, Gudbjartsson D F, Sulem P et al. Mutations in BRIP1 confer high risk of ovarian cancer[J]. Nature Genetics, 43, 1104-1107(2011).

    [26] Roychowdhury S, Iyer M K, Robinson D R et al. Personalized oncology through integrative high-throughput sequencing: a pilot study[J]. Science Translational Medicine, 3, 111ra121(2011).

    [27] Guan Y F, Li G R, Wang R J et al. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer[J]. Chinese Journal of Cancer, 31, 463-470(2012).

    [28] Hopp K, Heyer C M, Hommerding C J et al. B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis[J]. Human Molecular Genetics, 20, 2524-2534(2011).

    [29] Jones M A, Bhide S, Chin E et al. Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation[J]. Genetics in Medicine, 13, 921-932(2011).

    [30] Hollants S, Redeker E J W, Matthijs G. Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes[J]. Clinical Chemistry, 58, 717-724(2012).

    [31] Wu C H, Fallini C, Ticozzi N et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis[J]. Nature, 488, 499-503(2012).

    [32] Veltman J A, Brunner H G. De novo mutations in human genetic disease[J]. Nature Reviews Genetics, 13, 565-575(2012).

    [33] Yan X J, Xu J, Gu Z H et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia[J]. Nature Genetics, 43, 309-315(2011).

    [34] Banerji S, Cibulskis K, Rangel-Escareno C et al. Sequence analysis of mutations and translocations across breast cancer subtypes[J]. Nature, 486, 405-409(2012).

    [35] Agrawal N, Frederick M J, Pickering C R et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1[J]. Science, 333, 1154-1157(2011).

    [36] Quesada V, Conde L, Villamor N et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia[J]. Nature Genetics, 44, 47-52(2011).

    [37] Xiong D H, Li G M, Li K Z et al. Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients[J]. Carcinogenesis, 33, 1797-1805(2012).

    [38] Liu P Y, Morrison C, Wang L et al. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing[J]. Carcinogenesis, 33, 1270-1276(2012).

    [39] Krauthammer M, Kong Y, Ha B H et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma[J]. Nature Genetics, 44, 1006-1014(2012).

    [40] Wei X M, Walia V, Lin J C et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma[J]. Nature Genetics, 43, 442-446(2011).

    [41] Barbieri C E, Baca S C, Lawrence M S et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer[J]. Nature Genetics, 44, 685-689(2012).

    [42] Zang Z J, Cutcutache I, Poon S L et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes[J]. Nature Genetics, 44, 570-574(2012).

    [43] Yohe S, Thyagarajan B. Review of clinical next-generation sequencing[J]. Archives of Pathology & Laboratory Medicine, 141, 1544-1557(2017).

    [44] Muzzey D, Evans E A, Lieber C. Understanding the basics of NGS: from mechanism to variant calling[J]. Current Genetic Medicine Reports, 3, 158-165(2015).

    [45] Ponting C P. The functional repertoires of metazoan genomes[J]. Nature Reviews Genetics, 9, 689-698(2008).

    [46] Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function[J]. Nature Reviews Genetics, 11, 345-355(2010).

    [47] Akiva P, Toporik A, Edelheit S et al. Transcription-mediated gene fusion in the human genome[J]. Genome Research, 16, 30-36(2006).

    [48] Katayama S, Tomaru Y, Kasukawa T et al. Antisense transcription in the mammalian transcriptome[J]. Science, 309, 1564-1566(2005).

    [49] Gott J M, Emeson R B. Functions and mechanisms of RNA editing[J]. Annual Review of Genetics, 34, 499-531(2000).

    [50] Maher C A, Kumar-Sinha C, Cao X H et al. Transcriptome sequencing to detect gene fusions in cancer[J]. Nature, 458, 97-101(2009).

    [51] Maher C A, Palanisamy N, Brenner J C et al. Chimeric transcript discovery by paired-end transcriptome sequencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 12353-12358(2009).

    [52] Palanisamy N, Ateeq B, Kalyana-Sundaram S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma[J]. Nature Medicine, 16, 793-798(2010).

    [53] Pflueger D, Terry S, Sboner A et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing[J]. Genome Research, 21, 56-67(2011).

    [54] Nacu S, Yuan W L, Kan Z Y et al. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples[J]. BMC Medical Genomics, 4, 11(2011).

    [55] Ren S C, Peng Z Y, Mao J H et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings[J]. Cell Research, 22, 806-821(2012).

    [56] Edgren H, Murumagi A, Kangaspeska S et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing[J]. Genome Biology, 12, R6(2011).

    [57] Ha K C H, Lalonde E, Li L L et al. Identification of gene fusion transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines[J]. BMC Medical Genomics, 4, 75(2011).

    [58] Steidl C, Shah S P, Woolcock B W et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers[J]. Nature, 471, 377-381(2011).

    [59] Scott D W, Mungall K L, Ben-Neriah S et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma[J]. Blood, 119, 4949-4952(2012).

    [60] Pierron G, Tirode F, Lucchesi C et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion[J]. Nature Genetics, 44, 461-466(2012).

    [61] Berger M F, Levin J Z, Vijayendran K et al. Integrative analysis of the melanoma transcriptome[J]. Genome Research, 20, 413-427(2010).

    [62] Lawrence M S, Stojanov P, Mermel C H et al. Discovery and saturation analysis of cancer genes across 21 tumour types[J]. Nature, 505, 495-501(2014).

    [63] Cerami E, Gao J J, Dogrusoz U et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discovery, 2, 401-404(2012).

    [64] Sawyers C L, Hochhaus A, Feldman E et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study[J]. Blood, 99, 3530-3539(2002).

    [65] Talpaz M, Silver R T, Druker B J et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study[J]. Blood, 99, 1928-1937(2002).

    [66] Dienstmann R, Jang I S, Bot B et al. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors[J]. Cancer Discovery, 5, 118-123(2015).

    [67] Hastings J F, Latham S L, Kamili A et al. Memory of stochastic single-cell apoptotic signaling promotes chemoresistance in neuroblastoma[J]. Science Advances, 9, eabp8314(2023).

    [68] Siolas D, Hannon G J. Patient-derived tumor xenografts: transforming clinical samples into mouse models[J]. Cancer Research, 73, 5315-5319(2013).

    [69] Hidalgo M, Bruckheimer E, Rajeshkumar N V et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer[J]. Molecular Cancer Therapeutics, 10, 1311-1316(2011).

    [70] Stebbing J, Paz K, Schwartz G K et al. Patient-derived xenografts for individualized care in advanced sarcoma[J]. Cancer, 120, 2006-2015(2014).

    [71] van Renterghem A W J, van de Haar J, Voest E E. Functional precision oncology using patient-derived assays: bridging genotype and phenotype[J]. Nature Reviews: Clinical Oncology, 20, 305-317(2023).

    [72] Jorgensen J H, Ferraro M J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices[J]. Clinical Infectious Diseases, 49, 1749-1755(2009).

    [73] Yu M, Bardia A, Aceto N et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility[J]. Science, 345, 216-220(2014).

    [74] Ridky T W, Chow J M, Wong D J et al. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia[J]. Nature Medicine, 16, 1450-1455(2010).

    [75] Kenny H A, Lal-Nag M, White E A et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy[J]. Nature Communications, 6, 6220(2015).

    [76] Yin S Y, Xi R B, Wu A W et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Science Translational Medicine, 12, eaaz1723(2020).

    [77] Vaira V, Fedele G, Pyne S et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 8352-8356(2010).

    [78] Nagourney R A, Blitzer J B, Shuman R L et al. Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer[J]. Anticancer Research, 32, 4453-4460(2012).

    [79] Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes[J]. Current Opinion in Genetics & Development, 24, 68-73(2014).

    [80] Sato T, Vries R G, Snippert H J et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 459, 262-265(2009).

    [81] Sato T, Stange D E, Ferrante M et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium[J]. Gastroenterology, 141, 1762-1772(2011).

    [82] Boj S F, Hwang C I, Baker L A et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 160, 324-338(2015).

    [83] Gao D, Vela I, Sboner A et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 159, 176-187(2014).

    [84] Qi F, Li J, Qi Z R et al. Comprehensive metabolic profiling and genome-wide analysis reveal therapeutic modalities for hepatocellular carcinoma[J]. Research, 6, 0036(2023).

    [85] Launonen I M, Lyytikäinen N, Casado J et al. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer[J]. Nature Communications, 13, 835(2022).

    [86] Locke D, Hoyt C C. Companion diagnostic requirements for spatial biology using multiplex immunofluorescence and multispectral imaging[J]. Frontiers in Molecular Biosciences, 10, 1051491(2023).

    [87] Taube J M, Roman K, Engle E L et al. Multi-institutional TSA-amplified multiplexed immunofluorescence reproducibility evaluation (mitre) study[J]. Journal for Immunotherapy of Cancer, 9, e002197(2021).

    [88] Ajani J A, Xu Y, Huo L F et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition[J]. Gut, 70, 55-66(2021).

    [89] Ye G T, Yang Q B, Lei X T et al. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis[J]. Theranostics, 10, 7545-7560(2020).

    [90] Ijsselsteijn M E, Brouwer T P, Abdulrahman Z et al. Cancer immunophenotyping by seven-colour multispectral imaging without tyramide signal amplification[J]. The Journal of Pathology: Clinical Research, 5, 3-11(2019).

    [91] Mori H, Bolen J, Schuetter L et al. Characterizing the tumor immune microenvironment with tyramide-based multiplex immunofluorescence[J]. Journal of Mammary Gland Biology and Neoplasia, 25, 417-432(2020).

    [92] Hoyt C C. Multiplex immunofluorescence and multispectral imaging: forming the basis of a clinical test platform for immuno-oncology[J]. Frontiers in Molecular Biosciences, 8, 674747(2021).

    [93] Eminizer M, Nagy M, Engle E L et al. Comparing and correcting spectral sensitivities between multispectral microscopes: a prerequisite to clinical implementation[J]. Cancers, 15, 3109(2023).

    [94] Skala M C, Deming D A, Kratz J D. Technologies to assess drug response and heterogeneity in patient-derived cancer organoids[J]. Annual Review of Biomedical Engineering, 24, 157-177(2022).

    [95] Xing F Q, Liu Y C, Huang S G et al. Accelerating precision anti-cancer therapy by time-lapse and label-free 3D tumor slice culture platform[J]. Theranostics, 11, 9415-9430(2021).

    [96] Yan Y H, Xing F Q, Cao J Y et al. Fluorescence intensity and lifetime imaging of lipofuscin-like autofluorescence for label-free predicting clinical drug response in cancer[J]. Redox Biology, 59, 102578(2023).

    [97] Cannon T M, Shah A T, Skala M C. Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures[J]. Biomedical Optics Express, 8, 1911-1925(2017).

    [98] Heaster T M, Walsh A J, Zhao Y et al. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level[J]. Journal of Biophotonics, 11, e201600276(2018).

    [99] Heaster T M, Landman B A, Skala M C. Quantitative spatial analysis of metabolic heterogeneity across in vivo and in vitro tumor models[J]. Frontiers in Oncology, 9, 1144(2019).

    [100] Lukina M M, Dudenkova V V, Ignatova N I et al. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel[J]. Acta Biomaterialia, 1862, 1693-1700(2018).

    [101] Dugger S A, Platt A, Goldstein D B. Drug development in the era of precision medicine[J]. Nature Reviews Drug Discovery, 17, 183-196(2018).

    [102] Guo R, Luo J, Chang J et al. MET-dependent solid tumours: molecular diagnosis and targeted therapy[J]. Nature Reviews Clinical Oncology, 17, 569-587(2020).

    [103] Chrzanowska N M, Kowalewski J, Lewandowska M A. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors[J]. Molecules, 25, 1864(2020).

    [104] Pawlyn C, Davies F E. Toward personalized treatment in multiple myeloma based on molecular characteristics[J]. Blood, 133, 660-675(2019).

    [105] Treacy P J, Khosla A, Kyprianou N et al. Value of multiphoton microscopy in uro-oncology: a narrative review[J]. Translational Andrology and Urology, 12, 508-518(2023).

    [106] Di Martino J S, Nobre A R, Mondal C et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy[J]. Nature Cancer, 3, 90-107(2022).

    [107] Penet M F, Kakkad S, Pathak A P et al. Structure and function of a prostate cancer dissemination-permissive extracellular matrix[J]. Clinical Cancer Research, 23, 2245-2254(2017).

    [108] Ouellette J N, Drifka C R, Pointer K B et al. Navigating the collagen jungle: the biomedical potential of fiber organization in cancer[J]. Bioengineering, 8, 17(2021).

    [109] Zhou Z H, Ji C D, Xiao H L et al. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis[J]. Journal of Cancer, 8, 1466-1476(2017).

    [110] Best S L, Liu Y M, Keikhosravi A et al. Collagen organization of renal cell carcinoma differs between low and high grade tumors[J]. BMC Cancer, 19, 490(2019).

    [111] Bo Q Y, Wu Y C, Qiu S Q et al. Current progress of third harmonic generation microscopy in tumor diagnosis[J]. Chinese Journal of Lasers, 51, 0307101(2024).

    [112] Liu F X, Zhang L H, Huang X. Application of Raman spectroscopy in cancer diagnosis[J]. Laser & Optoelectronics Progress, 59, 0617016(2022).

    [113] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [114] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [115] Du J J, Su Y P, Qian C X et al. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells[J]. Nature Communications, 11, 4830(2020).

    [116] Tan Y Y, Li J J, Zhao G Y et al. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells[J]. Nature Communications, 13, 4554(2022).

    [117] Li J J, Condello S, Thomes-Pepin J et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 20, 303-314(2017).

    [118] Cutshaw G, Hassan N, Uthaman S et al. Monitoring metabolic changes in response to chemotherapies in cancer with Raman spectroscopy and metabolomics[J]. Analytical Chemistry, 95, 13172-13184(2023).

    [119] Chen X, Wu Z Q, He Y X et al. Accurate and rapid detection of peritoneal metastasis from gastric cancer by AI-assisted stimulated Raman molecular cytology[J]. Advanced Science, 10, e2300961(2023).

    [120] Kobayashi-Kirschvink K J, Comiter C S, Gaddam S et al. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA[J/OL]. Nature Biotechnology, 1(2024). https:∥www.nature.com/articles/s41587-023-02082-2#citeas

    [121] Li Z L, Li S W, Zhang S L et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 47, 0207005(2020).

    [122] Zhang B H, Guo L, Yao L et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 47, 0207018(2020).

    [123] Bentley J N, Ji M B, Xie X S et al. Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy[J]. Expert Review of Anticancer Therapy, 14, 359-361(2014).

    [124] Yue S H, Li J J, Lee S Y et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metabolism, 19, 393-406(2014).

    [125] Hong S L, Chen T, Zhu Y T et al. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules[J]. Angewandte Chemie International Edition, 53, 5827-5831(2014).

    [126] Wei L, Hu F H, Shen Y H et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering[J]. Nature Methods, 11, 410-412(2014).

    [127] Shen Y H, Zhao Z L, Zhang L Y et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 13394-13399(2017).

    [128] Wei L, Shen Y H, Xu F et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling[J]. ACS Chemical Biology, 10, 901-908(2015).

    [129] Wei L, Yu Y, Shen Y H et al. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 11226-11231(2013).

    [130] Shen Y H, Xu F, Wei L et al. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering[J]. Angewandte Chemie International Edition, 53, 5596-5599(2014).

    [131] Hu F H, Chen Z X, Zhang L Y et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering[J]. Angewandte Chemie (International Ed. in English), 54, 9821-9825(2015).

    [132] Long R, Zhang L Y, Shi L Y et al. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering[J]. Chemical Communications, 54, 152-155(2018).

    [133] Zhang L Y, Shi L Y, Shen Y H et al. Spectral tracing of deuterium for imaging glucose metabolism[J]. Nature Biomedical Engineering, 3, 402-413(2019).

    [134] Liu X W, Shi L X, Zhao Z L et al. VIBRANT: spectral profiling for single-cell drug responses[J]. Nature Methods, 21, 501-511(2024).

    [135] Zhang D L, Li C, Zhang C et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2, e1600521(2016).

    [136] He H J, Yin J Z, Li M S et al. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons[J]. Nature Methods, 21, 342-352(2024).

    [137] Liu J, Irudayaraj J M K. Non-fluorescent quantification of single mRNA with transient absorption microscopy[J]. Nanoscale, 8, 19242-19248(2016).

    [138] Yang Z Y, Zhao S J, Wang Z Y et al. Functionalized hydrogel for highly sensitive detection of tumor-derived exosomes[J]. Acta Optica Sinica, 43, 2117001(2023).

    Bin Yang, Shuhua Yue, Pu Wang. Optical Microscopy Imaging Contributes to Precision Oncology[J]. Chinese Journal of Lasers, 2024, 51(9): 0907004
    Download Citation