Author Affiliations
1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China2Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421001, China3Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, Chinashow less
Fig. 1. Layout of core arrangement
Fig. 2. Partitioning of radial (a) and axial (b) burnup zones
Fig. 3. Flow chart of critical rod position-search burnup code
Fig. 4. Variation of keff with burnup
Fig. 5. Variation of control rod value with burnup
Fig. 6. Variation of FU with burnup
Fig. 7. Variations of AO and the critical rod position of control rods with burnup
Fig. 8. Comparison of thermal-flux distribution between ARO (a) mode and control rod operation (b) mode at 2 d
Fig. 9. Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 290 d
Fig. 10. Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 590 d
Fig. 11. Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 290 d
Fig. 12. Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 590 d
Fig. 13. Variation of the critical rod position of control rods with burnup under different strategies
Fig. 14. Variations of FU and its axial inhomogeneity (DFUUL) with burnup under different strategies
Fig. 15. Variations of AO with burnup under different strategies
Fig. 16. Variation of R-PPF with burnup under different strategies
Fig. 17. Variations of AO and R-PPF with burnup under the value-equivalent scheme
Fig. 18. Variations of the critical rod position of control rods with burnup under the value-equivalent scheme
参数Parameter | 数值Value |
---|
功率Power | 100 MWt (for 1/4 core is 25 MWt) | 燃料组成/密度Fuel component/ density | 90wt% U+10wt% Zr/4.95 g·cm-3 | 可燃毒物组成/密度Burnable poison component/ density | 22.92wt% Gd2O3+77.08wt% Zr/6.83 g·cm-3 | 燃料装载量Fuel load | 805.14 kg (for 1/4 core is 201.285 kg) | 燃料棒/可燃毒物/控制棒内径 Fuel rod/ Burnable rod/ control rod inner radius | 0.23 cm/0.23 cm/0.26 cm | 燃料棒/可燃毒物/控制棒包壳厚度 Fuel rod/ Burnable rod/ control rod cladding thickness | 0.06 cm/0.06 cm/0.03 cm | 燃料棒/可燃毒物/控制棒包壳材料 Fuel rod/ Burnable rod/ control rod cladding materials | Zr/Zr/06Cr18Ni10Ti | 燃料棒外径/栅距Fuel rod outer radius/ pitch | 0.58 cm/0.7 cm | 组件外径/组件中心距Assembly outer radius/ pitch | 6 cm/7.2 cm | 组件包壳材料/厚度Assembly cladding materials/ thickness | Zr/0.15 cm | 慢化剂Moderator | H2O | 堆芯活性区高度Core active height | 1 m | 堆芯半径Core radius | 0.606 m | 慢化剂温度Moderator temperature | 295 ℃ |
|
Table 1. Core parameters
材料 Material 、 | 宏观热中子吸收截面 Macro thermal neutron-absorption cross section / cm-1 、 |
---|
钛酸镝 Dy2TiO5 | 35.25 | 硼化铪(20%富集度10B) HfB2 (20wo 10B) | 54.91 | 氧化铕 Eu2O3 | 116.54 | 碳化硼 B4C | 202.67 | 硼化铪(80%富集度10B) HfB2 (80wo 10B) | 210.05 |
|
Table 2. Typical macro neutron-absorption cross sections of control rod materials (E=0.025 3 eV)
参数 Parameter 、 | 反应性或价值 Reactivity or value / 10-5 、 |
---|
初始剩余反应性 Initial excess reactivity | 33 146 | 初始反应性 (ARO) Initial reactivity (ARO) | 15 810 | 钛酸镝价值Value of the Dy2TiO5 | 17 037 | 硼化铪(20%富集度 10B)价值 Value of the HfB2 (20wo-10B) | 19 796 | 氧化铕价值Value of the Eu2O3 | 20 463 | 碳化硼价值Value of the B4C | 22 945 | 硼化铪(80%富集度 10B)价值 Value of the HfB2 (80wo-10B) | 23 277 |
|
Table 3. Reactivity and initial value of the control rod
材料 Material 、 | 最大价值棒组 Maximum value group / 10-5 、 |
---|
钛酸镝 Dy2TiO5 | R2/1 887 | 硼化铪(20%富集度 10B) HfB2 (20wo 10B) | R2/2 063 | 氧化铕 Eu2O3 | R2/2 132 | 碳化硼 B4C | R2/2 323 | 硼化铪(80%富集度 10B) HfB2 (80wo 10B) | R2/2 328 |
|
Table 4. Initial integral value of maximum value groups
用例Case | 动作策略 Move-in/out strategy 、 | 控制棒材料 Control rod material 、 | 控制棒价值 Control rod value / 10-5 、 |
---|
A组优先移动 Group A prioritized move 、 | R组优先移动 Group R prioritized move 、 | A组 Group A 、 | R组 Group R 、 | A组 Group A 、 | R组 Group R 、 | A组+R组 Group A +R 、 |
---|
1 | √ | × | HfB2(80wo-10B) | HfB2(80wo-10B) | 9 727 | 7 545 | 19 835 | 2 | × | √ | HfB2(80wo-10B) | HfB2(80wo-10B) | 9 727 | 7 545 | 19 835 | 3 | √ | × | HfB2(80wo-10B) | Eu2O3 | 9 727 | 6 714 | 18 957 | 4 | × | √ | HfB2(80wo-10B) | Eu2O3 | 9 727 | 6 714 | 18 957 | 5 | √ | × | HfB2(80wo-10B) | HfB2(20wo-10B) | 9 727 | 6 543 | 18 581 | 6 | × | √ | HfB2(80wo-10B) | HfB2(20wo-10B) | 9 727 | 6 543 | 18 581 | 7 | √ | × | HfB2(80wo-10B) | Dy2TiO5 | 9 727 | 5 884 | 17 771 | 8 | × | √ | HfB2(80wo-10B) | Dy2TiO5 | 9 727 | 5 884 | 17 771 |
|
Table 5. Move-in/out strategy and material selection