• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 3, 030604 (2024)
Zhiqiang WU1、2, Jinsen XIE1、2、*, Lei LOU3, Pengyu CHEN1、2, Tao LIU1、2, Nianbiao DENG1、2, and Tao YU1、2
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421001, China
  • 3Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.030604 Cite this Article
    Zhiqiang WU, Jinsen XIE, Lei LOU, Pengyu CHEN, Tao LIU, Nianbiao DENG, Tao YU. Control rod strategy for long-term small rod-controlled pressurized water reactors[J]. NUCLEAR TECHNIQUES, 2024, 47(3): 030604 Copy Citation Text show less
    Layout of core arrangement
    Fig. 1. Layout of core arrangement
    Partitioning of radial (a) and axial (b) burnup zones
    Fig. 2. Partitioning of radial (a) and axial (b) burnup zones
    Flow chart of critical rod position-search burnup code
    Fig. 3. Flow chart of critical rod position-search burnup code
    Variation of keff with burnup
    Fig. 4. Variation of keff with burnup
    Variation of control rod value with burnup
    Fig. 5. Variation of control rod value with burnup
    Variation of FU with burnup
    Fig. 6. Variation of FU with burnup
    Variations of AO and the critical rod position of control rods with burnup
    Fig. 7. Variations of AO and the critical rod position of control rods with burnup
    Comparison of thermal-flux distribution between ARO (a) mode and control rod operation (b) mode at 2 d
    Fig. 8. Comparison of thermal-flux distribution between ARO (a) mode and control rod operation (b) mode at 2 d
    Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 290 d
    Fig. 9. Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 290 d
    Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 590 d
    Fig. 10. Comparison of thermal-flux distribution between ARO mode (a) and control rod operation mode (b) at 590 d
    Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 290 d
    Fig. 11. Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 290 d
    Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 590 d
    Fig. 12. Comparison of FU distribution between ARO mode (a) and control rod operation mode (b) at 590 d
    Variation of the critical rod position of control rods with burnup under different strategies
    Fig. 13. Variation of the critical rod position of control rods with burnup under different strategies
    Variations of FU and its axial inhomogeneity (DFUUL) with burnup under different strategies
    Fig. 14. Variations of FU and its axial inhomogeneity (DFUUL) with burnup under different strategies
    Variations of AO with burnup under different strategies
    Fig. 15. Variations of AO with burnup under different strategies
    Variation of R-PPF with burnup under different strategies
    Fig. 16. Variation of R-PPF with burnup under different strategies
    Variations of AO and R-PPF with burnup under the value-equivalent scheme
    Fig. 17. Variations of AO and R-PPF with burnup under the value-equivalent scheme
    Variations of the critical rod position of control rods with burnup under the value-equivalent scheme
    Fig. 18. Variations of the critical rod position of control rods with burnup under the value-equivalent scheme
    参数Parameter数值Value
    功率Power100 MWt (for 1/4 core is 25 MWt)
    燃料组成/密度Fuel component/ density90wt% U+10wt% Zr/4.95 g·cm-3
    可燃毒物组成/密度Burnable poison component/ density22.92wt% Gd2O3+77.08wt% Zr/6.83 g·cm-3
    燃料装载量Fuel load805.14 kg (for 1/4 core is 201.285 kg)

    燃料棒/可燃毒物/控制棒内径

    Fuel rod/ Burnable rod/ control rod inner radius

    0.23 cm/0.23 cm/0.26 cm

    燃料棒/可燃毒物/控制棒包壳厚度

    Fuel rod/ Burnable rod/ control rod cladding thickness

    0.06 cm/0.06 cm/0.03 cm

    燃料棒/可燃毒物/控制棒包壳材料

    Fuel rod/ Burnable rod/ control rod cladding materials

    Zr/Zr/06Cr18Ni10Ti
    燃料棒外径/栅距Fuel rod outer radius/ pitch0.58 cm/0.7 cm
    组件外径/组件中心距Assembly outer radius/ pitch6 cm/7.2 cm
    组件包壳材料/厚度Assembly cladding materials/ thicknessZr/0.15 cm
    慢化剂ModeratorH2O
    堆芯活性区高度Core active height1 m
    堆芯半径Core radius0.606 m
    慢化剂温度Moderator temperature295 ℃
    Table 1. Core parameters

    材料

    Material

    宏观热中子吸收截面

    Macro thermal neutron-absorption cross section / cm-1

    钛酸镝 Dy2TiO535.25
    硼化铪(20%富集度10B) HfB2 (20wo 10B)54.91
    氧化铕 Eu2O3116.54
    碳化硼 B4C202.67
    硼化铪(80%富集度10B) HfB2 (80wo 10B)210.05
    Table 2. Typical macro neutron-absorption cross sections of control rod materials (E=0.025 3 eV)

    参数

    Parameter

    反应性或价值

    Reactivity or value / 10-5

    初始剩余反应性

    Initial excess reactivity

    33 146

    初始反应性 (ARO)

    Initial reactivity (ARO)

    15 810
    钛酸镝价值Value of the Dy2TiO517 037

    硼化铪(20%富集度 10B)价值

    Value of the HfB2 (20wo-10B)

    19 796
    氧化铕价值Value of the Eu2O320 463
    碳化硼价值Value of the B4C22 945

    硼化铪(80%富集度 10B)价值

    Value of the HfB2 (80wo-10B)

    23 277
    Table 3. Reactivity and initial value of the control rod

    材料

    Material

    最大价值棒组

    Maximum value group / 10-5

    钛酸镝 Dy2TiO5R2/1 887

    硼化铪(20%富集度 10B)

    HfB2 (20wo 10B)

    R2/2 063
    氧化铕 Eu2O3R2/2 132
    碳化硼 B4CR2/2 323

    硼化铪(80%富集度 10B)

    HfB2 (80wo 10B)

    R2/2 328
    Table 4. Initial integral value of maximum value groups
    用例Case

    动作策略

    Move-in/out strategy

    控制棒材料

    Control rod material

    控制棒价值

    Control rod value / 10-5

    A组优先移动

    Group A

    prioritized move

    R组优先移动

    Group R

    prioritized move

    A组

    Group A

    R组

    Group R

    A组

    Group A

    R组

    Group R

    A组+R组

    Group A +R

    1×HfB2(80wo-10B)HfB2(80wo-10B)9 7277 54519 835
    2×HfB2(80wo-10B)HfB2(80wo-10B)9 7277 54519 835
    3×HfB2(80wo-10B)Eu2O39 7276 71418 957
    4×HfB2(80wo-10B)Eu2O39 7276 71418 957
    5×HfB2(80wo-10B)HfB2(20wo-10B)9 7276 54318 581
    6×HfB2(80wo-10B)HfB2(20wo-10B)9 7276 54318 581
    7×HfB2(80wo-10B)Dy2TiO59 7275 88417 771
    8×HfB2(80wo-10B)Dy2TiO59 7275 88417 771
    Table 5. Move-in/out strategy and material selection
    Zhiqiang WU, Jinsen XIE, Lei LOU, Pengyu CHEN, Tao LIU, Nianbiao DENG, Tao YU. Control rod strategy for long-term small rod-controlled pressurized water reactors[J]. NUCLEAR TECHNIQUES, 2024, 47(3): 030604
    Download Citation