• Nano-Micro Letters
  • Vol. 16, Issue 1, 129 (2024)
Xiaoxiao Jia1, Chaofeng Liu2, Zhi Wang1, Di Huang1, and Guozhong Cao1、*
Author Affiliations
  • 1Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
  • 2School of Materials Science and Engineering, Tongji University, Shanghai 201804, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01339-y Cite this Article
    Xiaoxiao Jia, Chaofeng Liu, Zhi Wang, Di Huang, Guozhong Cao. Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 129 Copy Citation Text show less
    References

    [1] B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries a look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011).

    [2] A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    [3] Z. Xing, S. Wang, A. Yu, Z. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50, 229–244 (2018).

    [4] H. Zheng, S. Wang, S. Liu, J. Wu, J. Guan et al., The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 33, 2300815 (2023).

    [5] D. Deng, J. Wu, Q. Feng, X. Zhao, M. Liu et al., Highly reversible zinc-air batteries at–40 ℃ enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. (2023).

    [6] X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).

    [7] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022).

    [8] R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485 (2015).

    [9] H. Cui, L. Ma, Z. Huang, Z. Chen, C. Zhi, Organic materials-based cathode for zinc ion battery. SmartMat 3, 565–581 (2022).

    [10] Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250–283 (2022).

    [11] Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022).

    [12] Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023).

    [13] X. Jia, R. Tian, C. Liu, J. Zheng, M. Tian et al., Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Mater. Today Energy 28, 101063 (2022).

    [14] C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019).

    [15] S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian et al., Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012).

    [16] Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn–air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 (2023).

    [17] B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021).

    [18] D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018).

    [19] Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 (2021).

    [20] C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang et al., Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J. Mater. Chem. A 8, 7713–7723 (2020).

    [21] L. Xing, C. Zhang, M. Li, P. Hu, X. Zhang et al., Revealing excess Al3+ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Mater. 52, 291–298 (2022).

    [22] M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman et al., Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 29, 9–16 (2020).

    [23] Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020).

    [24] Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv. Mater. 32, e2002450 (2020).

    [25] L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29, 1906142 (2019).

    [26] X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397–437 (2021).

    [27] S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2 O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, e2001113 (2020).

    [28] S. Zanarini, F. Di Lupo, A. Bedini, S. Vankova, N. Garino et al., Three-colored electrochromic lithiated vanadium oxides: the role of surface superoxides in the electro-generation of the red state. J. Mater. Chem. C 2, 8854–8857 (2014).

    [29] H.T. Evans Jr., J.E. Post, D.R. Ross, J.A. Nelen, The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339–351 (1994)

    [30] N. Baffier, L. Znaidi, J.C. Badot, Ionic hydration number in V2O5 intercalated xerogels V2O5 intercalated xerogels Mx(H2O)yV2O5. J. Chem. Soc. Faraday Trans. 86(14), 2623–2628 (1990).

    [31] V. Bondarenka, S. Grebinskij, S. Kaciulis, G. Mattogno, S. Mickevicius et al., XPS study of vanadium–yttrium hydrates. J. Electron Spectrosc. Relat. Phenom. 120, 131–135 (2001).

    [32] S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Synthesis and electrochemical impedance properties of CdS nanoparticles decorated polyaniline nanorods. Chem. Eng. J. 181–182, 806–812 (2012).

    [33] Y. Zhang, R. Huang, X. Wang, Z. Wang, B. Song et al., Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion batteries. J. Alloys Compd. 907, 164434 (2022).

    [34] Y. Tong, S. Su, X. Li, B. Liang, J. Peng et al., Synergistic iron ion and alkylammonium cation intercalated vanadium oxide cathode for highly efficient aqueous zinc ion battery. J. Power. Sources 528, 231226 (2022).

    [35] Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022).

    [36] G.A. Sawatzky, D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20, 1546–1555 (1979).

    [37] F. Ureña-Begara, A. Crunteanu, J.-P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci. 403, 717–727 (2017).

    [38] V. Bondarenka, Valence of vanadium in hydrated compounds. Lithuanian J. Phys. 47, 333–342 (2007).

    [39] E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44(8), 1022–1025 (2012).

    [40] L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye et al., Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Nat. Commun. 7, 12022 (2016).

    [41] D. Goodacre, M. Blum, C. Buechner, H. Hoek, S.M. Gericke et al., Water adsorption on vanadium oxide thin films in ambient relative humidity. J. Chem. Phys. 152, 044715 (2020).

    [42] H. Gökce, S. Bahçeli, Vibrational analysis of trimethylphenyl ammonium chloride. Z. Für Naturforschung A 64, 127–131 (2009).

    [43] T. Hu, Z. Feng, Y. Zhang, Y. Liu, J. Sun et al., “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front. 8, 79–89 (2021).

    [44] T. Hu, Y. Liu, Y. Zhang, M. Chen, J. Zheng et al., 3D hierarchical porous V3O7·H2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J. Colloid Interface Sci. 531, 382–393 (2018).

    [45] C. O’Dwyer, D. Navas, V. Lavayen, E. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb, C.M. Sotomayor Torres, Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18(13), 3016–3022 (2006).

    [46] E. Ruiz-Hitzky, B. Casal, Interlayer adsorption of ammonia and pyridine in V2O5 xerogel. J. Chem. Soc. Faraday Trans. Phys. Chem. Condensed Phases. 82(5), 1597–1604 (1986).

    [47] L. Soltane, F. Sediri, Hydrothermal synthesis and characterization of mesoporous rod-like hybrid organic-inorganic nanocrystalline based vanadium oxide. Ceram. Int. 40, 1531–1538 (2014).

    [48] J. Dong, Y. Jiang, Q. Wei, S. Tan, Y. Xu et al., Strongly coupled pyridine-V2 O5 ·nH2 O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small 15, e1900379 (2019).

    [49] X. Xu, Y. Qian, C. Wang, Z. Bai, C. Wang et al., Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping. Chem. Eng. J. 451, 138770 (2023).

    [50] M. Occhiuzzi, D. Cordischi, R. Dragone, Reactivity of some vanadium oxides: an EPR and XRD study. J. Solid State Chem. 178, 1551–1558 (2005).

    [51] Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022).

    [52] A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuels 1, 2053–2060 (2017).

    [53] M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12, 31564–31574 (2020).

    [54] K. Zhu, T. Wu, K. Huang, NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv. Energy Mater. 9, 1901968 (2019).

    [55] F. Zhang, X. Sun, M. Du, X. Zhang, W. Dong et al., Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ. Mater. 4, 620–630 (2021).

    [56] P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018).

    [57] C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018).

    [58] S. Zhang, L. Chen, D. Dong, Y. Kong, J. Zhang et al., AmV2O5 with binary phases as high-performance cathode materials for zinc-ion batteries: effect of the pre-intercalated cations A and reversible transformation of coordination polyhedra. ACS Appl. Mater. Interfaces 14, 24415–24424 (2022).

    [59] B. Feng, D. Sun, H. Wang, S. Tan, H. Zhang, A simple method for the synthesis of KV3O80.42H2O nanorod and its lithium insertion/deinsertion properties. Int. J. Electrochem. Sci. 8, 1095–1102 (2013).

    [60] D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6, 968–984 (2020).

    [61] P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 55, 627–663 (1999).

    [62] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017).

    [63] V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2, 8667–8674 (2019).

    [64] J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2, 1988–1996 (2019).

    [65] M. Du, C. Liu, F. Zhang, W. Dong, X. Zhang et al., Tunable layered (Na, Mn)V8O20· n H2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 7, 2000083 (2020).

    [66] L.G. Mar, P.Y. Timbrell, R.N. Lamb, An XPS study of zinc oxide thin film growth on copper using zinc acetate as a precursor. Thin Solid Films 223, 341–347 (1993).

    [67] H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19, 3199–3206 (2019).

    [68] J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023).

    [69] W. Leng, X. Liu, Y. Gong, Chromium vanadate with unsaturated coordination sites for high-performance zinc-ion battery. Chem. Eng. J. 431, 134034 (2022).

    [70] Z. Feng, J. Sun, Y. Liu, H. Jiang, T. Hu et al., Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power. Sources 536, 231489 (2022).

    [71] J. Zheng, C. Liu, M. Tian, X. Jia, E.P. Jahrman et al., Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy 70, 104519 (2020).

    [72] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    Xiaoxiao Jia, Chaofeng Liu, Zhi Wang, Di Huang, Guozhong Cao. Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 129
    Download Citation