• Chinese Optics Letters
  • Vol. 22, Issue 4, 041407 (2024)
Hongxing Yang1、2, Yan Wang1、2, Ziqi Yin1、2, Pengcheng Hu1、2、*, Ruitao Yang1、2, and Jing Li1、2
Author Affiliations
  • 1Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
  • 2Key Laboratory of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China
  • show less
    DOI: 10.3788/COL202422.041407 Cite this Article Set citation alerts
    Hongxing Yang, Yan Wang, Ziqi Yin, Pengcheng Hu, Ruitao Yang, Jing Li. Design of a high frequency accuracy heterodyne laser source working in a wide temperature range[J]. Chinese Optics Letters, 2024, 22(4): 041407 Copy Citation Text show less
    (a) Thermal equilibrium state; (b) thermal equilibrium temperature of the laser free-running experiment; (c) comparison of the preset temperature and actual temperature of the laser cavity.
    Fig. 1. (a) Thermal equilibrium state; (b) thermal equilibrium temperature of the laser free-running experiment; (c) comparison of the preset temperature and actual temperature of the laser cavity.
    (a) Laser beat frequency at different temperatures; (b) nonequilibrium power-locking principle; (c) variation in laser frequency with error signal.
    Fig. 2. (a) Laser beat frequency at different temperatures; (b) nonequilibrium power-locking principle; (c) variation in laser frequency with error signal.
    (a) Structural solution of laser; (b) frequency stabilization system.
    Fig. 3. (a) Structural solution of laser; (b) frequency stabilization system.
    Beat frequency with ISL at different ambient temperatures. (a) −20.13°C, (b) −9.22°C, (c) 8.64°C, (d) 16.13°C, (e) 28.32°C, (f) 40.13°C.
    Fig. 4. Beat frequency with ISL at different ambient temperatures. (a) −20.13°C, (b) −9.22°C, (c) 8.64°C, (d) 16.13°C, (e) 28.32°C, (f) 40.13°C.
    (a) Comparison of nonequilibrium power and equilibrium power frequency stabilization schemes; (b) beat frequencies of the other two lasers at different temperatures.
    Fig. 5. (a) Comparison of nonequilibrium power and equilibrium power frequency stabilization schemes; (b) beat frequencies of the other two lasers at different temperatures.
    Sampling Time/sAmbient Temperature/°C
    −20.13−9.228.6416.1328.3240.13
    0.12.44 × 10−107.51 × 10−116.39 × 10−113.29 × 10−104.40 × 10−101.17 × 10−10
    16.40 × 10−111.15 × 10−103.41 × 10−111.14 × 10−101.65 × 10−101.32 × 10−10
    103.97 × 10−113.98 × 10−115.07 × 10−113.41 × 10−115.14 × 10−114.00 × 10−11
    1005.28 × 10−112.53 × 10−115.22 × 10−111.58 × 10−114.37 × 10−116.74 × 10−11
    10006.12 × 10−112.85 × 10−113.17 × 10−112.52 × 10−115.44 × 10−112.33 × 10−11
    Table 1. Allan Variance of Laser Frequency Stabilization at Different Temperatures
    Hongxing Yang, Yan Wang, Ziqi Yin, Pengcheng Hu, Ruitao Yang, Jing Li. Design of a high frequency accuracy heterodyne laser source working in a wide temperature range[J]. Chinese Optics Letters, 2024, 22(4): 041407
    Download Citation