• Nano-Micro Letters
  • Vol. 16, Issue 1, 145 (2024)
Junjie Zheng1、2, Bao Zhang3、*, Xin Chen1、2, Wenyu Hao4, Jia Yao1、2, Jingying Li1、2, Yi Gan1、2, Xiaofang Wang1、2, Xingtai Liu1、2, Ziang Wu1、2, Youwei Liu1、2, Lin Lv1、2, Li Tao1、2, Pei Liang5, Xiao Ji4, Hao Wang1、2、**, and Houzhao Wan1、2、***
Author Affiliations
  • 1Hubei Yangtze Memory Laboratories, Wuhan, 430205, People’s Republic of China
  • 2Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, People’s Republic of China
  • 3School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
  • 4School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 5Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01361-0 Cite this Article
    Junjie Zheng, Bao Zhang, Xin Chen, Wenyu Hao, Jia Yao, Jingying Li, Yi Gan, Xiaofang Wang, Xingtai Liu, Ziang Wu, Youwei Liu, Lin Lv, Li Tao, Pei Liang, Xiao Ji, Hao Wang, Houzhao Wan. Critical Solvation Structures Arrested Active Molecules for Reversible Zn Electrochemistry[J]. Nano-Micro Letters, 2024, 16(1): 145 Copy Citation Text show less
    References

    [1] X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7, 1145–1175 (2023).

    [2] Y. Yang, S. Guo, Y. Pan, B. Lu, S. Liang et al., Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ. Sci. 16, 2358–2367 (2023).

    [3] W. Zhou, S. Ding, D. Zhao, D. Chao, An energetic Sn metal aqueous battery. Joule 7, 1104–1107 (2023).

    [4] D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, 2310290 (2023).

    [5] Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023).

    [6] H. Li, R. Zhao, W. Zhou, L. Wang, W. Li et al., Trade-off between zincophilicity and zincophobicity: toward stable Zn-based aqueous batteries. JACS Au 3, 2107–2116 (2023).

    [7] J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2021).

    [8] Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen et al., Triple-function hydrated eutectic electrolyte for enhanced aqueous zinc batteries. Angew. Chem. Int. Ed. 62, 2310577 (2023).

    [9] Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, 2307271 (2023).

    [10] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    [11] N. Wang, X. Chen, H. Wan, B. Zhang, K. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. 33, 2300795 (2023).

    [12] Z. Xu, H. Xu, J. Sun, J. Wang, D. Zhao et al., Electrolyte strategies toward optimizing Zn anode for zinc-ion batteries. Trans. Tianjin Univ. 29, 407–431 (2023).

    [13] Y. Ma, Q. Zhang, L. Liu, Y. Li, H. Li et al., N, N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl. Sci. Rev. 9, nwac051 (2022).

    [14] L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020).

    [15] J. Zheng, P. Shi, C. Chen, X. Chen, Y. Gan et al., Reinforced bonding of Mo-doped MnO2 with ammonium-ion as cathodes for durable aqueous MnO2–Zn batteries. Sci. China Mater. 66, 3113–3122 (2023).

    [16] Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023).

    [17] W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, 2212695 (2023).

    [18] H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, 2217833 (2023).

    [19] Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, 2215324 (2023).

    [20] Y. Yang, H. Hua, Z. Lv, M. Zhang, C. Liu et al., Reconstruction of electric double layer for long-life aqueous zinc metal batteries. Adv. Funct. Mater. 33, 2212446 (2023).

    [21] F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34, e2206754 (2022).

    [22] H. Li, Q. Ma, Y. Yuan, R. Wang, Z. Wang et al., Mesoporous N, S-rich carbon hollow nanospheres controllably prepared from poly(2-aminothiazole) with ultrafast and highly durable potassium storage. Adv. Funct. Mater. (2023).

    [23] T. Wei, Y. Ren, Y. Wang, L.-E. Mo, Z. Li et al., Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano 17, 3765–3775 (2023).

    [24] P. Xiong, C. Lin, Y. Wei, J.-H. Kim, G. Jang et al., Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8, 2718–2727 (2023).

    [25] P. Xiong, Y. Kang, H. Yuan, Q. Liu, S.H. Baek et al., Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 9, 011401 (2022).

    [26] P. Xiong, Y. Zhang, J. Zhang, S.H. Baek, L. Zeng et al., Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4, 100076 (2022).

    [27] P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613–1625 (2023).

    [28] X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8, 1192–1200 (2023).

    [29] P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021).

    [30] B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2112693 (2022).

    [31] J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022).

    [32] J. Yin, X. Feng, Z. Gan, Y. Gao, Y. Cheng et al., From anode to cell: Synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Mater. 54, 623–640 (2023).

    [33] C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6, 1103–1120 (2022).

    [34] D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., Frontispiece: ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, 2380762 (2023).

    [35] D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474–1484 (2023).

    [36] N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang et al., Zinc–organic battery with a wide operation-temperature window from − 70 to 150 °C. Angew. Chem. Int. Ed. 59, 14577–14583 (2020).

    [37] M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 (2023).

    [38] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    [39] L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    [40] P. Li, B.P. Roberts, D.K. Chakravorty, K.M. Merz Jr., Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).

    [41] J.N. Canongia Lopes, A.A.H. Pádua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893–16898 (2004).

    [42] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    [43] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    [44] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    [45] F. Neese, The ORCA program system. Wires Comput. Mol. Sci. 2, 73–78 (2012).

    [46] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    [47] H. Zhao, Q. Fu, X. Luo, X. Wu, S. Indris et al., Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Mater. 50, 464–472 (2022).

    [48] Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367–19374 (2020).

    [49] Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023).

    [50] Q. Dou, N. Yao, W.K. Pang, Y. Park, P. Xiong et al., Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy Environ. Sci. 15, 4572–4583 (2022).

    [51] Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121, 6654–6695 (2021).

    [52] C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020).

    [53] X. Bai, Y. Nan, K. Yang, B. Deng, J. Shao et al., Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Adv. Funct. Mater. 33, 2307595 (2023).

    [54] H. Wang, C. Luo, Y. Qian, C. Yang, X. Shi et al., Upcycling of phosphogypsum waste for efficient zinc-ion batteries. J. Energy Chem. 81, 157–166 (2023).

    [55] Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    [56] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022).

    [57] J. Shi, K. Xia, L. Liu, C. Liu, Q. Zhang et al., Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile. Electrochim. Acta 358, 136937 (2020).

    [58] C. Cui, D. Han, H. Lu, Z. Li, K. Zhang et al., Breaking consecutive hydrogen-bond network toward high-rate hydrous organic zinc batteries. Adv. Energy Mater. 13, 2301466 (2023).

    [59] Y. Han, F. Wang, B. Zhang, L. Yan, J. Hao et al., Building block effect induces horizontally oriented bottom Zn(002) deposition for a highly stable zinc anode. Energy Storage Mater. 62, 102928 (2023).

    [60] W. Li, L. Huang, H. Zhang, Y. Wu, F. Wei et al., Supramolecular mineralization strategy for engineering covalent organic frameworks with superior Zn–I2 battery performances. Matter 6, 2312–2323 (2023).

    [61] M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14, 219 (2022).

    [62] L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    [63] D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60, 13035–13041 (2021).

    Junjie Zheng, Bao Zhang, Xin Chen, Wenyu Hao, Jia Yao, Jingying Li, Yi Gan, Xiaofang Wang, Xingtai Liu, Ziang Wu, Youwei Liu, Lin Lv, Li Tao, Pei Liang, Xiao Ji, Hao Wang, Houzhao Wan. Critical Solvation Structures Arrested Active Molecules for Reversible Zn Electrochemistry[J]. Nano-Micro Letters, 2024, 16(1): 145
    Download Citation