• High Power Laser and Particle Beams
  • Vol. 35, Issue 5, 055005 (2023)
Ziyi Zhang1, Yunming Tao1, Ming Gao2, Zhanghao Chen3, and Liangliang Lin1
Author Affiliations
  • 1School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
  • 2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 3Guangdong Institute for Drug Control, Guangzhou 510663, China
  • show less
    DOI: 10.11884/HPLPB202335.220333 Cite this Article
    Ziyi Zhang, Yunming Tao, Ming Gao, Zhanghao Chen, Liangliang Lin. Microfluidic plasma: novel process intensification technique[J]. High Power Laser and Particle Beams, 2023, 35(5): 055005 Copy Citation Text show less
    References

    [1] Ma Lianxiang, Li Qingling, Liu Bingcheng, . Energy conservation potential and energy-saving measures for process industry[J]. Journal of Dongguan University of Technology, 13, 109-112(2006).

    [2] Liu Youzhi. Discussion on process intensification technology to promote the transformation, upgrading and sustainable development of chemical industry[J]. Chemical Industry and Engineering Progress, 37, 1203-1211(2018).

    [3] Ivanov I A, Tikhonov V N, Tikhonov A V. Microwave complex for obtaining low-temperature plasma at atmospheric pressure[J]. Journal of Physics: Conference Series, 1393, 012042(2019).

    [4] Fox-Lyon N, Knoll A J, Franek J, et al. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas[J]. Journal of Physics D: Applied Physics, 46, 485202(2013).

    [5] Sureshkumar A, Sankar R, Mandal M, et al. Effective bacterial inactivation using low temperature radio frequency plasma[J]. International Journal of Pharmaceutics, 396, 17-22(2010).

    [6] Akhmadeev Y H, Denisov V V, Koval N N, et al. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode[J]. Plasma Physics Reports, 43, 67-74(2017).

    [7] Bourke P, Ziuzina D, Han Lu, et al. Microbiological interactions with cold plasma[J]. Journal of Applied Microbiology, 123, 308-324(2017).

    [8] Li Xuanhe, Lin Liangliang, Wang Sheng, . Recent progress in the synthesis of nanomaterials by microplasma[J]. Journal of Chemical Engineering of Chinese Universities, 35, 589-600(2021).

    [9] Bruggeman P J, Kushner M J, Locke B R, et al. Plasma–liquid interactions: a review and roadmap[J]. Plasma Sources Science and Technology, 25, 053002(2016).

    [10] Lin Liangliang, Starostin S A, Li Sirui, et al. Synthesis of metallic nanoparticles by microplasma[J]. Physical Sciences Reviews, 3, 20170121(2018).

    [11] Wang Yanqian, Wang Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor[J]. Chemical Industry and Engineering Progress, 40, 185-191(2021).

    [12] Feng Junjie, Sun Bing, Shi Ning, . Bubble breakup under influence of confined structures in microchannel[J]. Chemical Industry and Engineering Progress, 40, 5907-5918(2021).

    [13] Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 189, 431-448(2018).

    [14] Jähnisch K, Hessel V, Löwe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie International Edition, 43, 406-446(2004).

    [15] Borra J P, Jidenko N, Hou Jun, et al. Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges[J]. Journal of Aerosol Science, 79, 109-125(2015).

    [16] Yan Tingting. Atmospheric pressure microplasma sythesis of nanoparticles[D]. Shanghai: Shanghai Jiao Tong University, 2017

    [17] Schulz-von der Gathen V, Schaper L, Knake N, et al. Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 41, 194004(2008).

    [18] Es-sebbar E, Benilan Y, Jolly A, et al. Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF[J]. Journal of Physics D: Applied Physics, 42, 135206(2009).

    [19] Bornholdt S, Wolter M, Kersten H. Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition[J]. The European Physical Journal D, 60, 653-660(2010).

    [20] Niemi K, Schulz-von der Gathen V, Döbele H F. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 14, 375-386(2005).

    [21] Döbele H F, Mosbach T, Niemi K, et al. Laser-induced fluorescence measurements of absolute atomic densities: concepts and limitations[J]. Plasma Sources Science and Technology, 14, S31-S41(2005).

    [22] Amorim J, Baravian G, Jolly J. Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas[J]. Journal of Physics D: Applied Physics, 33, R51-R65(2000).

    [23] Boogaarts M G H, Mazouffre S, Brinkman G J, et al. Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma[J]. Review of Scientific Instruments, 73, 73-86(2002).

    [24] Knake N, Reuter S, Niemi K, et al. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 41, 194006(2008).

    [25] Schröder D, Bahre H, Knake N, et al. Influence of target surfaces on the atomic oxygen distribution in the effluent of a micro-scaled atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 21, 024007(2012).

    [26] Li Dong, Kong M G, Britun N, et al. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array[J]. Journal of Physics D: Applied Physics, 50, 215201(2017).

    [27] Tresp H, Hammer M U, Winter J, et al. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy[J]. Journal of Physics D: Applied Physics, 46, 435401(2013).

    [28] Benedikt J, Schröder D, Schneider S, et al. Absolute OH and O radical densities in effluent of a He/H2O micro-scaled atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 25, 045013(2016).

    [29] Vass M, Wilczek S, Schulze J, et al. Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N2[J]. Plasma Sources Science and Technology, 30, 105010(2021).

    [30] Preissing P, Korolov I, Schulze J, et al. Three-dimensional density distributions of NO in the effluent of the COST reference microplasma jet operated in He/N2/O2[J]. Plasma Sources Science and Technology, 29, 125001(2020).

    [31] Gorbanev Y, Verlackt C C W, Tinck S, et al. Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet[J]. Physical Chemistry Chemical Physics, 20, 2797-2808(2018).

    [32] Waskoenig J, Niemi K, Knake N, et al. Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 19, 045018(2010).

    [33] Willems G, Golda J, Ellerweg D, et al. Corrigendum: characterization of the effluent of a He/O2 micro-scaled atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry (2010 New J. Phys. 12 013021)[J]. New Journal of Physics, 21, 059501(2019).

    [34] Lu Xinpei, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 630, 1-84(2016).

    [35] Schulz-von der Gathen V, Buck V, Gans T, et al. Optical diagnostics of micro discharge jets[J]. Contributions to Plasma Physics, 47, 510-519(2007).

    [36] Maletić D, Puač N, Lazović S, et al. Detection of atomic oxygen and nitrogen created in a radio-frequency-driven micro-scale atmospheric pressure plasma jet using mass spectrometry[J]. Plasma Physics and Controlled Fusion, 54, 124046(2012).

    [37] Sousa J S, Niemi K, Cox L J, et al. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications[J]. Journal of Applied Physics, 109, 123302(2011).

    [38] Khlyustova A, Labay C, Machala Z, et al. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review[J]. Frontiers of Chemical Science and Engineering, 13, 238-252(2019).

    [39] Rui Lichen, Pang Zining, Li Xuanhe, . Liquid plasmas and their applications in nanomaterial synthesis[J]. High Power Laser and Particle Beams, 34, 069001(2022).

    [40] Benedikt J, Hefny M M, Shaw A, et al. The fate of plasma-generated oxygen atoms in aqueous solutions: non-equilibrium atmospheric pressure plasmas as an efficient source of atomic O(aq)[J]. Physical Chemistry Chemical Physics, 20, 12037-12042(2018).

    [41] Schneider S, Lackmann J W, Narberhaus F, et al. Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 44, 295201(2011).

    [42] Edengeiser E, Lackmann J W, Bründermann E, et al. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study[J]. Journal of Biophotonics, 8, 918-924(2015).

    [43] Lackmann J W, Schneider S, Narberhaus F, et al. acterization of bacterial biomacromolecule damage by (V)UV particle channels of Xmicroscale atmospheric pressure plasma jet(XAPPJ)[J]. 2011, 27: 8788.

    [44] Lin Liangliang, Pho H Q, Zong Lu, et al. Microfluidic plasmas: novel technique for chemistry and chemical engineering[J]. Chemical Engineering Journal, 417, 129355(2021).

    [45] Yamanishi Y, Sameshima S, Kuriki H, et al. Transptation of monodispersed microplasma bubble in microfluidic chip under atmospheric pressure[C]Transducers & Eurosenss XXVII: The 17th International Conference on SolidState Senss, Actuats Microsystems. 2013: 17951798.

    [46] Wengler J, Ognier S, Zhang Mengxue, et al. Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes[J]. Reaction Chemistry & Engineering, 3, 930-941(2018).

    [47] Abedelnour E, Ognier S, Zhang Mengxue, et al. Plasma flow chemistry for direct N-acylation of amines by esters[J]. Chemical Communications, 58, 7281-7284(2022).

    [48] Winter J, Brandenburg R, Weltmann K D. Atmospheric pressure plasma jets: an overview of devices and new directions[J]. Plasma Sources Science and Technology, 24, 064001(2015).

    [49] Reuter S, von Woedtke T, Weltmann K D. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications[J]. Journal of Physics D: Applied Physics, 51, 233001(2018).

    [50] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 43, 075201(2010).

    [51] Li Guo, Li Heping, Wang Liyan, et al. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters, 92, 221504(2008).

    [52] Reuter S, Tresp H, Wende K, et al. From RONS to ROS: tailoring plasma jet treatment of skin cells[J]. IEEE Transactions on Plasma Science, 40, 2986-2993(2012).

    [53] Chen Guangliang, Zheng Xu, Lü Guohua, et al. Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization[J]. Chinese Physics B, 21, 105201(2012).

    [54] Kedroňová E, Zajíčková L, Hegemann D, et al. Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers[J]. Plasma Processes and Polymers, 12, 1231-1243(2015).

    [55] Mariotti D, Sankaran R M. Microplasmas for nanomaterials synthesis[J]. Journal of Physics D: Applied Physics, 43, 323001(2010).

    [56] Kim S J, Chung T H, Joh H M, et al. Characteristics of multiple plasma plumes and formation of bullets in an atmospheric- pressure plasma jet array[J]. IEEE Transactions on Plasma Science, 43, 753-759(2015).

    [57] Kim J Y, Ballato J, Kim S O. Intense and energetic atmospheric pressure plasma jet arrays[J]. Plasma Processes and Polymers, 9, 253-260(2012).

    [58] Cao Z, Nie Q, Bayliss D L, et al. Spatially extended atmospheric plasma arrays[J]. Plasma Sources Science and Technology, 19, 025003(2010).

    [59] Fang Zhi, Ruan Chen, Shao Tao, et al. Two discharge modes in an atmospheric pressure plasma jet array in argon[J]. Plasma Sources Science and Technology, 25, 01LT01(2016).

    [60] Zhang Xianhui, Zhou Renwu, Zhou Rusen, et al. Treatment of ribonucleoside solution with atmospheric-pressure plasma[J]. Plasma Processes and Polymers, 13, 429-437(2016).

    [61] Cao Z, Walsh J L, Kong M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 94, 021501(2009).

    [62] Hu Jie, Wang Shuqi, Wang Lin, et al. Advances in paper-based point-of-care diagnostics[J]. Biosensors and Bioelectronics, 54, 585-597(2014).

    [63] Xing Siyuan, Harake R S, Pan Tingrui. Droplet-driven transports on superhydrophobic-patterned surface microfluidics[J]. Lab on a Chip, 11, 3642-3648(2011).

    [64] Xia Yanyan, Si Jin, Li Zhiyang. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review[J]. Biosensors and Bioelectronics, 77, 774-789(2016).

    [65] Wu Sheting, Huang Chenyu, Weng C C, et al. Rapid prototyping of an open-surface microfluidic platform using wettability-patterned surfaces prepared by an atmospheric-pressure plasma jet[J]. ACS Omega, 4, 16292-16299(2019).

    [66] Peng Chengyun, Wu J S, Tsai C H D. Wettability distribution on the surface treated by plasma jet at different flow rates for microfluidic applications[J]. IEEE Transactions on Plasma Science, 49, 168-176(2021).

    [67] Yu Yashen, Kuo L H, Wu M C, et al. A novel fabrication of PDMS chip using atmospheric pressure plasma jet: hyhobicity modification feasibility test[C]IEEERSJ International Conference on Intelligent Robots Systems. 2018: 278283.

    [68] Wang Tao, Wang Xiaolin, Yang Bin, et al. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics[J]. Journal of Micromechanics and Microengineering, 27, 075005(2017).

    [69] Liu Feng, Cai Meiling, Zhang Bo, et al. Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure[J]. Journal of Vacuum Science & Technology A, 36, 061302(2018).

    [70] Kim D H, Park C S, Shin B J, et al. Uniform area treatment for surface modification by simple atmospheric pressure plasma treatment technique[J]. IEEE Access, 7, 103727-103737(2019).

    [71] Yang Fan, Deng Dehui, Pan Xiulian, et al. Understanding nano effects in catalysis[J]. National Science Review, 2, 183-201(2015).

    [72] Darkwah W K, Ao Yanhui. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications[J]. Nanoscale Research Letters, 13, 388(2018).

    [73] Yu Minrui, Huang Yu, Ballweg J, et al. Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth[J]. ACS Nano, 5, 2447-2457(2011).

    [74] Comini E. Metal oxide nano-crystals for gas sensing[J]. Analytica Chimica Acta, 568, 28-40(2006).

    [75] McNamara K, Tofail S A M. Nanoparticles in biomedical applications[J]. Advances in Physics: X, 2, 54-88(2017).

    [76] Ananth A, Gandhi M S, Mok Y S. A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods[J]. Journal of Physics D: Applied Physics, 46, 155202(2013).

    [77] Kumar A, Lin P A, Xue A, et al. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour[J]. Nature Communications, 4, 2618(2013).

    [78] Sankaran R M, Holunga D, Flagan R C, et al. Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges[J]. Nano Letters, 5, 537-541(2005).

    [79] Lin Liangliang, Starostin S A, Wang Qi, et al. An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles[J]. Chemical Engineering Journal, 321, 447-457(2017).

    [80] Khatoon N, Yasin H M, Younus M, et al. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique[J]. AIP Advances, 8, 015130(2018).

    [81] Yan Tingting, Zhong Xiaoxia, Rider A E, et al. Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed AuxAg1−x nanoparticles[J]. Chemical Communications, 50, 3144-3147(2014).

    [82] Mahmoudabadi Z D, Eslami E. One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–its application as photoanode in dye-sensitized solar cell[J]. Journal of Alloys and Compounds, 793, 336-342(2019).

    [83] Li Xuanhe, Lin Liangliang, Chiang W H, et al. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue[J]. Reaction Chemistry & Engineering, 7, 346-353(2022).

    [84] Saito T, Mitsuya R, Ito Y, et al. Microstructured SiOx thin films deposited from hexamethyldisilazane and hexamethyldisiloxane using atmospheric pressure thermal microplasma jet[J]. Thin Solid Films, 669, 321-328(2019).

    [85] Oshima F, Stauss S, Ishii C, et al. Plasma microreactor in supercritical xenon and its application to diamondoid synthesis[J]. Journal of Physics D: Applied Physics, 45, 402003(2012).

    [86] Li Dai’en, Lin C H. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection[J]. RSC Advances, 8, 16139-16145(2018).

    [87] Lin Liangliang, Li Xuanhe, Gao Haiyan, et al. Microfluidic plasma-based continuous and tunable synthesis of Ag–Au nanoparticles and their SERS properties[J]. Industrial & Engineering Chemistry Research, 61, 2183-2194(2022).

    [88] Reuter R, Ellerweg D, von Keudell A, et al. Surface reactions as carbon removal mechanism in deposition of silicon dioxide films at atmospheric pressure[J]. Applied Physics Letters, 98, 111502(2011).

    [89] Benedikt J, Reuter R, Ellerweg D, et al. Deposition of SiOx films by means of atmospheric pressure microplasma jets[DBOL]. arXiv preprint arXiv: 1105.2691, 2011.

    [90] Patinglag L. Development of a microfluidic atmosphericpressure plasma react f water treatment[D]. Manchester, UK: Manchester Metropolitan University, 2019.

    [91] Sun P P, Araud E M, Huang Conghui, et al. Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets[J]. npj Biofilms and Microbiomes, 4, 24(2018).

    [92] Jansen F. Effects of nonthermal atmospheric pressure plasma on human fibroblasts[D]. Nth Rhine Westphalia, Germany: HeinrichHeineUniversitaet Duesseldf, 2021.

    [93] Xu Zimu, Lan Yan, Ma Jie, et al. Applications of atmospheric pressure plasma in microbial inactivation and cancer therapy: a brief review[J]. Plasma Science and Technology, 22, 103001(2020).

    [94] Misra N N, Jo C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science & Technology, 64, 74-86(2017).

    [95] Deng Lizhen, Mujumdar A S, Pan Zhongli, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 60, 2481-2508(2020).

    [96] Neretti G, Tampieri F, Borghi C A, et al. Characterization of a plasma source for biomedical applications by electrical, optical, and chemical measurements[J]. Plasma Processes and Polymers, 15, 1800105(2018).

    [97] Petrović Z L, Puač N, Lazović S, et al. Biomedical applications and diagnostics of atmospheric pressure plasma[J]. Journal of Physics: Conference Series, 356, 012001(2012).

    Ziyi Zhang, Yunming Tao, Ming Gao, Zhanghao Chen, Liangliang Lin. Microfluidic plasma: novel process intensification technique[J]. High Power Laser and Particle Beams, 2023, 35(5): 055005
    Download Citation