• Chinese Optics Letters
  • Vol. 21, Issue 8, 080201 (2023)
Hui Li1, Biao Wu1, Jiachen Yu1, Xiaolong Yuan1, Xiaoji Zhou1, Bin Wang2, Weibiao Chen2, Wei Xiong1、*, and Xuzong Chen1、**
Author Affiliations
  • 1Institute of Quantum Electronics, School of Electronics, Peking University, Beijing 100871, China
  • 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202321.080201 Cite this Article Set citation alerts
    Hui Li, Biao Wu, Jiachen Yu, Xiaolong Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen. Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station[J]. Chinese Optics Letters, 2023, 21(8): 080201 Copy Citation Text show less
    References

    [1] I. Bloch, J. Dalibard, S. Nascimbène. Quantum simulations with ultracold quantum gases. Nat. Phys., 8, 267(2012).

    [2] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 510, 518(2014).

    [3] J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, R. Keski-Kuha. An atomic gravitational wave interferometric sensor in low Earth orbit (AGIS-LEO). Gen. Relativ. Gravit., 43, 1953(2011).

    [4] P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran. New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett., 110, 171102(2013).

    [5] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran. Gravitational wave detection with atom interferometry. Phys. Lett. B, 678, 37(2009).

    [6] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhr, I. Bloch. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature, 487, 454(2012).

    [7] J. Léonard, A. Morales, P. Zupancic, T. Donner, T. Esslinger. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science, 358, 1415(2017).

    [8] M. Di Liberto, A. Recati, N. Trivedi, I. Carusotto, C. Menotti. Particle-hole character of the Higgs and goldstone modes in strongly interacting lattice bosons. Phys. Rev. Lett., 120, 073201(2018).

    [9] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198(1995).

    [10] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969(1995).

    [11] C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687(1995).

    [12] A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, W. Ketterle. Cooling Bose-Einstein condensates below 500 picokelvin. Science, 301, 1513(2003).

    [13] H. Ammann, N. Christensen. Delta kick cooling: a new method for cooling atoms. Phys. Rev. Lett., 78, 2088(1997).

    [14] T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, M. A. Kasevich. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett., 114, 143004(2015).

    [15] T. Van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, E. Rasel, T. Hänsch, J. Reichel. Bose-Einstein condensation in microgravity. Science, 328, 1540(2010).

    [16] R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, P. Bouyer. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun., 2, 474(2011).

    [17] D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J. Grosse, E. Rasel. Space-borne Bose-Einstein condensation for precision interferometry. Nature, 562, 391(2018).

    [18] E. Gibney. Universe’s coolest lab set to open up quantum world. Nature, 557, 151(2018).

    [19] D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer, J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F. Shotwell, N. Yu, R. J. Thompson. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature, 582, 193(2020).

    [20] A. Cho. Trapped in orbit. Science, 357, 986(2017).

    [21] C. A. Sackett, T. C. Lam, J. C. Stickney, J. H. Burke. Extreme adiabatic expansion in micro-gravity: modeling for the cold atomic laboratory. Microgravity Sci. Technol., 30, 155(2018).

    [22] E. R. Elliott, M. C. Krutzik, J. R. Williams, R. J. Thompson, D. C. Aveline. NASA’s Cold Atom Lab (CAL): system development and ground test status. NPJ Microgravity, 4, 16(2018).

    [23] R. Corgier, S. Amri, W. Herr, H. Ahlers, J. Rudolph, D. Guéry-Odelin, E. Rasel, N. Gaaloul. Fast manipulation of Bose–Einstein condensates with an atom chip. New J. Phys., 20, 055002(2018).

    [24] H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, E. Rasel. Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett., 110, 093602(2013).

    [25] L. Wang, P. Zhang, X. Chen, Z. Ma. Generating a picokelvin ultracold atomic ensemble in microgravity. J. Phys. B, 46, 195302(2013).

    [26] H. Yao, T. Luan, C. Li, Y. Zhang, Z. Ma, X. Chen. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity. Opt. Commun., 359, 123(2016).

    [27] T. Luan, Y. Li, X. Zhang, X. Chen. Realization of two-stage crossed beam cooling and the comparison with delta-kick cooling in experiment. Rev. Sci. Instrum., 89, 123110(2018).

    [28] B. Fan, L. Zhao, Y. Zhang, J. Sun, W. Xiong, J. Chen, X. Chen. Numerical study of evaporative cooling in the space station. J. Phys. B, 54, 015302(2020).

    [29] H. Li, J. Yu, X. Yuan, B. Wu, Y. Xie, L. Li, A. Liang, M. Huang, S. Jin, W. Xiong, B. Wang, D. Chen, T. Li, X. Hou, L. Li, X. Zhou, W. Chen, X. Chen. Deep cooling scheme of quantum degenerate gas and ground experimental verification for Chinese Space Station. Front. Phys., 10, 971059(2022).

    [30] Y. Xie, B. Fan, H. Li, A. Liang, M. Huang, B. Wu, B. Wang, X. Chen, L. Liu. Ground experiment verification and on-orbit prediction of the two-stage cooling at pK level in the Chinese Space Station. J. Phys. B, 55, 205301(2022).

    [31] X. Chen, B. Fan. The emergence of picokelvin physics. Rep. Prog. Phys., 83, 076401(2020).

    [32] L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, W. D. Phillips. Temporal, matter-wave-dispersion talbot effect. Phys. Rev. Lett., 83, 5407(1999).

    [33] M. Edwards, B. Benton, J. Heward, C. W. Clark. Momentum-space engineering of gaseous Bose-Einstein condensates. Phys. Rev. A, 82, 063613(2010).

    [34] W. Xiong, X. Yue, Z. Wang, X. Zhou, X. Chen. Manipulating the momentum state of a condensate by sequences of standing-wave pulses. Phys. Rev. A, 84, 043616(2011).

    [35] W. Xiong, X. Zhou, X. Yue, Y. Zhai, X. Chen. A momentum filter for atomic gas. New J. Phys., 15, 063025(2013).

    [36] J. P. Dowling. Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A, 57, 4736(1998).

    [37] K. Eckert, P. Hyllus, D. Bruß, U. V. Poulsen, M. Lewenstein, C. Jentsch, T. Müller, E. M. Rasel, W. Ertmer. Differential atom interferometry beyond the standard quantum limit. Phys. Rev. A, 73, 013814(2006).

    [38] V. Ménoret, P. Vermeulen, N. Le Moigne, S. Bonvalot, P. Bouyer, A. Landragin, B. Desruelle. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci. Rep., 8, 12300(2018).

    [39] S. Gupta, K. Dieckmann, Z. Hadzibabic, D. E. Pritchard. Contrast interferometry using Bose-Einstein condensates to measure h/m and α. Phys. Rev. Lett., 89, 140401(2002).

    [40] P. L. Gould, G. A. Ruff, D. E. Pritchard. Diffraction of atoms by light: the near-resonant Kapitza-Dirac effect. Phys. Rev. Lett., 56, 827(1986).

    [41] E. M. Rasel, M. K. Oberthaler, H. Batelaan, J. Schmiedmayer, A. Zeilinger. Atom wave interferometry with diffraction gratings of light. Phys. Rev. Lett., 75, 2633(1995).

    [42] A. D. Cronin, J. Schmiedmayer, D. E. Pritchard. Optics and interferometry with atoms and molecules. Rev. Mod. Phys., 81, 1051(2009).

    [43] J. F. Clauser, M. W. Reinsch. New theoretical and experimental results in Fresnel optics with applications to matter-wave and x-ray interferometry. Appl. Phys. B, 54, 380(1992).

    [44] J. F. Clauser, S. Li. Talbot-von Lau atom interferometry with cold slow potassium. Phys. Rev. A, 49, R2213(1994).

    [45] M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, D. E. Pritchard. Near-field imaging of atom diffraction gratings: the atomic Talbot effect. Phys. Rev. A, 51, R14(1995).

    [46] S. Nowak, Ch. Kurtsiefer, T. Pfau, C. David. High-order Talbot fringes for atomic matter waves. Opt. Lett., 22, 1430(1997).

    [47] W. B. Case, M. Tomandl, S. Deachapunya, M. Arndt. Realization of optical carpets in the Talbot and Talbot-Lau configurations. Opt. Express, 17, 020966(2009).

    Hui Li, Biao Wu, Jiachen Yu, Xiaolong Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen. Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station[J]. Chinese Optics Letters, 2023, 21(8): 080201
    Download Citation