• Infrared and Laser Engineering
  • Vol. 53, Issue 2, 20230590 (2024)
Zihan Guan1、2, Min Wang3, and Xiaotong Li1、2
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 3ASMPT Hong Kong Limited, Hong Kong SAR 999077, China
  • show less
    DOI: 10.3788/IRLA20230590 Cite this Article
    Zihan Guan, Min Wang, Xiaotong Li. Tolerance desensitization method based on principal component analysis and nodal aberration theory[J]. Infrared and Laser Engineering, 2024, 53(2): 20230590 Copy Citation Text show less
    Asymmetric perturbation model
    Fig. 1. Asymmetric perturbation model
    Axial perturbation model
    Fig. 2. Axial perturbation model
    Workflow of tolerance sensitivity reduction
    Fig. 3. Workflow of tolerance sensitivity reduction
    Layout of Structure 1
    Fig. 4. Layout of Structure 1
    Distribution of eigenvalues
    Fig. 5. Distribution of eigenvalues
    Zernike coefficients distribution of main eigenvectors
    Fig. 6. Zernike coefficients distribution of main eigenvectors
    Weight distribution of induced aberrations in Structure 1
    Fig. 7. Weight distribution of induced aberrations in Structure 1
    Distribution of induced coma on different surfaces
    Fig. 8. Distribution of induced coma on different surfaces
    MTF performance before and after optimization of Structure 1 (>98% MTF@36 lp/mm)
    Fig. 9. MTF performance before and after optimization of Structure 1 (>98% MTF@36 lp/mm)
    Layout of Structure 2
    Fig. 10. Layout of Structure 2
    Weight distribution of induced aberrations in Structure 2
    Fig. 11. Weight distribution of induced aberrations in Structure 2
    Distribution of induced axial aberration on different surfaces
    Fig. 12. Distribution of induced axial aberration on different surfaces
    MTF performance of Structure 2 (>90% MTF@180 lp/mm)
    Fig. 13. MTF performance of Structure 2 (>90% MTF@180 lp/mm)
    Induced aberrationMathematical expression
    Tilt$ {W}_{111}\left(\overrightarrow{\sigma }\cdot \overrightarrow{\rho }\right)={W}_{111}\sigma \rho \mathrm{c}\mathrm{o}\mathrm{s}\theta $
    Uniform coma$ {W}_{131}(\overrightarrow{\sigma }\cdot \overrightarrow{\rho })(\overrightarrow{\rho }\cdot \overrightarrow{\rho })={W}_{131}\sigma {\rho }^{3}\mathrm{c}\mathrm{o}\mathrm{s}\theta $
    Linear astigmatism$ {W}_{222}(\overrightarrow{\sigma }\cdot \overrightarrow{\rho })(\overrightarrow{H}\cdot \overrightarrow{\rho })={W}_{222}\sigma H{\rho }^{2}{\mathrm{c}\mathrm{o}\mathrm{s}}^{2}\theta $
    Uniform astigmatism$ {W}_{222}(\overrightarrow{\sigma }\cdot \overrightarrow{\rho })(\overrightarrow{\sigma }\cdot \overrightarrow{\rho })={W}_{222}{\sigma }^{2}{\rho }^{2}{\mathrm{c}\mathrm{o}\mathrm{s}}^{2}\theta $
    Table 1. Several types of induced aberration
    ParameterValue
    Working F#11
    Magnification1.35×
    EFL/mm94
    Wavelength/nm460-635
    Table 2. System parameters of Structure 1
    ParameterValue
    Thickness±0.02 mm
    Surface radius±3 fringes
    Surface tilt±1'
    Element decenter±0.015 mm
    Element tilt±1'
    NominalMeanStandard deviation
    Original0.7010.3470.120
    Optimized0.6870.5050.082
    Table 3. Tolerance setting and performance of Structure 1 (36 lp/mm@ MTF, on-axis)
    ParameterValue
    NA0.5
    Magnification
    Total length/mm110
    Wavelength/nm460-635
    Table 4. System parameters of Structure 2
    ParameterValue
    Thickness±0.01 mm
    Surface radius±1 fringes
    Surface tilt±1'
    Element decenter±0.01 mm
    Element tilt±1'
    NominalMeanStandard deviation
    Original0.3450.2430.075
    Optimized0.3270.2720.066
    Table 5. Tolerance setting and nominal performance of Structure 2 (180 lp/mm@ MTF, on-axis)
    Zihan Guan, Min Wang, Xiaotong Li. Tolerance desensitization method based on principal component analysis and nodal aberration theory[J]. Infrared and Laser Engineering, 2024, 53(2): 20230590
    Download Citation