• High Power Laser and Particle Beams
  • Vol. 36, Issue 1, 013005 (2024)
Xinyue Niu1, Yanran Gu1, Xu Chu1, Jinmei Yao1、2、*, Muyu Yi1、2, Langning Wang1、2, and Tao Xun1、2、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202436.230260 Cite this Article
    Xinyue Niu, Yanran Gu, Xu Chu, Jinmei Yao, Muyu Yi, Langning Wang, Tao Xun. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36(1): 013005 Copy Citation Text show less
    References

    [1] Kelkar K S, Islam N E, Fessler C M, et al. Design and characterization of silicon carbide photoconductive switches for high field applications[J]. Journal of Applied Physics, 100, 124905(2006).

    [2] Sullivan J S, Stanley J R. Wide bandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 36, 2528-2532(2008).

    [3] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 26, 92-102(2018).

    [4] Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Advanced Electronic Materials, 4, 1600501(2018).

    [5] Rakheja S, Huang L, Hau-Riege S, et al. Performance modeling of silicon carbide photoconductive switches for high-power and high-frequency applications[J]. IEEE Journal of the Electron Devices Society, 8, 1118-1128(2020).

    [6] Zhu Li, Hu Long, Shen Xin, et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode[J]. IEEE Electron Device Letters, 44, 289-292(2023).

    [7] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 65, 1308-1313(2018).

    [8] Xiao Longfei, Yang Xianglong, DuanPeng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 57, 2804-2808(2018).

    [9] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon carbide photoconductiveswitches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9, 4879-4886(2021).

    [10] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 9, e13(2021).

    [11] Shi Nuannuan, Li Wei, Zhu Ninghua, et al. Optically controlled phase array antenna [Invited][J]. Chinese Optics Letters, 17, 052301(2019).

    [12] He Zi’ang, Xu Jiaxin, Zhou Tao, . Study on wideband constant beamwidth optical multi-beam forming technologies[J]. Semiconductor Optoelectronics, 43, 51-55(2022).

    [13] Zhao Qingchao, Zhang Yi, Wang Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 3619-3632(2020).

    [14] Ye Xingwei, Zhang Fangzheng, Pan Shilong. Optical true time delay unit for multi-beamforming[J]. Optics Express, 23, 10002-10008(2015).

    [15] Zheng Pengfei, Wang Chenquan, Xu Xuemeng, et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna[J]. IEEE Photonics Journal, 11, 1-9(2019).

    [16] Cheng Qiman, Zheng Shilie, Zhang Qiang, et al. An integrated optical beamforming network for two-dimensional phased array radar[J]. Optics Communications, 489, 126809(2021).

    [17] Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 31, 1351-1354(2019).

    [18] Wang Bangji, Liu Qingxiang, Zhou Lei, . Real-time data exchange of beam steering system for phased array antenna[J]. High Power Laser and Particle Beams, 30, 013003(2018).

    [19] Tian Zhongcheng, Jin Xueming, Zhu Yupeng. Principle application of microwave photonic electronic warfare technology[M]. Beijing: Science Press, 2018: 3032

    [20] Yu Anliang, Zou Weiwen, Li Shuguang, et al. A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM[J]. IEEE Photonics Journal, 6, 1-10(2014).

    [21] Bliek L, Wahls S, Visscher I, et al. Automatic delay tuning of a novel ring resonator-based photonic beamformer for a transmit phased array antenna[J]. Journal of Lightwave Technology, 37, 4976-4984(2019).

    [22] Tian Boyu, Peng Yingnan, Hu Qiqi, . Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 35, 041001(2023).

    [23] Wang Jian, Cai Haiwen, Yang Fei, et al. Optically controlled microwave beamfmers: CN103414519B[P]. 20160907

    Xinyue Niu, Yanran Gu, Xu Chu, Jinmei Yao, Muyu Yi, Langning Wang, Tao Xun. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36(1): 013005
    Download Citation